The air resistance on the feather would be the correct answer.
Main sequence stars are characterised by the source of their energy.They are all undergoing fusion of hydrogen into helium within their cores. The mass of the star is the main element for such process or phenomenon to take place for it is a determinant of both the rate at which they perform the said activity and the amount of fuel available.
To answer the question, the lower mass limit for a main sequence star is about 0.08. If the mass of a main sequence star is lower than the above-mentioned value, there would be a deficit or insufficiency of gravitational force to generate a standard temperature for hydrogen core fusion to take place and the underdeveloped star would form into a brown dwarf instead.
Answer:
the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Explanation:
The torque is given by :

where ;
m = 0.160 A.m²
B = 0.0800 T
θ = 35°
So the magnitude of the torque N = mBsinθ
N = (0.160)(0.0800)(sin 35°)
N = 0.007341
N = 7.34×10⁻³ Nm
Hence, the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
b) The potential energy 
U = -mBcosθ
U = (- 0.160)(0.0800)(cos 45)
U = -0.010485
U = -1.0485 ×10⁻² J
Thus, the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
If we have to figure air resistance into it, then we don't have enough information to find an answer.
If the air around it is going to have an effect on how it falls, then it'll depend on the thickness of the book, the shape of the book, whether it's a hard-cover or soft-cover, how far the covers stick out past the pages, how smooth or rough the covers are, how bumpy the binding it. and what position you hold it in before you let it go.
(THAT's why we always ignore air resistance, especially when the question is actually about gravity anyway.)