1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Liono4ka [1.6K]
3 years ago
11

Y=x+1 y=x^2-1 please help i don't understand

Mathematics
1 answer:
ololo11 [35]3 years ago
8 0

ANSWER

The solution is

(x=1,y=2),(x=2,y=3)


<u>EXPLANATION</u>

We have

y=x+1---(1)

and


y=x^2-1---(2)


Let us substitute equation (1) in to equation (2). This gives us,

x+1=x^2-1(2)

We rewrite this as a quadratic equation as the highest degree is 2.

x^2-x-1-1=0

This implies that


x^2-x-2=0


we factor to obtain,


x^2+x-2x-2=0


x(x-1)-2(x-1)=0


(x-1)(x-2)=0


This means,

(x-1)=0\:\: or\:\:(x-2)=0

x=1\:\: or\:\:x=2


We substitute this values into any of the above equations, preferably equation (1)


When, x=1, y=1+1=2


When, x=2, y=2+1=3


The solution is

(1,2),(2,3)


You might be interested in
Find a power series for the function, centered at c, and determine the interval of convergence. f(x) = 9 3x + 2 , c = 6
san4es73 [151]

Answer:

\frac{9}{3x + 2} = 1 - \frac{1}{3}(x - \frac{7}{3}) + \frac{1}{9}(x - \frac{7}{3})^2 - \frac{1}{27}(x - \frac{7}{3})^3 ........

The interval of convergence is:(-\frac{2}{3},\frac{16}{3})

Step-by-step explanation:

Given

f(x)= \frac{9}{3x+ 2}

c = 6

The geometric series centered at c is of the form:

\frac{a}{1 - (r - c)} = \sum\limits^{\infty}_{n=0}a(r - c)^n, |r - c| < 1.

Where:

a \to first term

r - c \to common ratio

We have to write

f(x)= \frac{9}{3x+ 2}

In the following form:

\frac{a}{1 - r}

So, we have:

f(x)= \frac{9}{3x+ 2}

Rewrite as:

f(x) = \frac{9}{3x - 18 + 18 +2}

f(x) = \frac{9}{3x - 18 + 20}

Factorize

f(x) = \frac{1}{\frac{1}{9}(3x + 2)}

Open bracket

f(x) = \frac{1}{\frac{1}{3}x + \frac{2}{9}}

Rewrite as:

f(x) = \frac{1}{1- 1 + \frac{1}{3}x + \frac{2}{9}}

Collect like terms

f(x) = \frac{1}{1 + \frac{1}{3}x + \frac{2}{9}- 1}

Take LCM

f(x) = \frac{1}{1 + \frac{1}{3}x + \frac{2-9}{9}}

f(x) = \frac{1}{1 + \frac{1}{3}x - \frac{7}{9}}

So, we have:

f(x) = \frac{1}{1 -(- \frac{1}{3}x + \frac{7}{9})}

By comparison with: \frac{a}{1 - r}

a = 1

r = -\frac{1}{3}x + \frac{7}{9}

r = -\frac{1}{3}(x - \frac{7}{3})

At c = 6, we have:

r = -\frac{1}{3}(x - \frac{7}{3}+6-6)

Take LCM

r = -\frac{1}{3}(x + \frac{-7+18}{3}+6-6)

r = -\frac{1}{3}(x + \frac{11}{3}+6-6)

So, the power series becomes:

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}ar^n

Substitute 1 for a

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}1*r^n

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}r^n

Substitute the expression for r

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}(-\frac{1}{3}(x - \frac{7}{3}))^n

Expand

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}[(-\frac{1}{3})^n* (x - \frac{7}{3})^n]

Further expand:

\frac{9}{3x + 2} = 1 - \frac{1}{3}(x - \frac{7}{3}) + \frac{1}{9}(x - \frac{7}{3})^2 - \frac{1}{27}(x - \frac{7}{3})^3 ................

The power series converges when:

\frac{1}{3}|x - \frac{7}{3}| < 1

Multiply both sides by 3

|x - \frac{7}{3}|

Expand the absolute inequality

-3 < x - \frac{7}{3}

Solve for x

\frac{7}{3}  -3 < x

Take LCM

\frac{7-9}{3} < x

-\frac{2}{3} < x

The interval of convergence is:(-\frac{2}{3},\frac{16}{3})

6 0
2 years ago
Help me please hurry it up.
Katena32 [7]

The answer is either to change the - 1 to 0, or to add + 1 to it next to the - 1.

4 0
3 years ago
One cell phone company charges a $76 sign-up fee and $40 per month. Another cell phone company charges $136 sign-up fee and $20
WARRIOR [948]

Answer:

The cost would be same after 3 months.

Step-by-step explanation:

Given that:

Charges of first company;

Sign up fee = $76

Per month charges = $40

Let,

x be the number of months

y be the total cost.

y = 40x + 76      Eqn 1

Charges of second company;

Sign up fee = $136

Per month charges = $20

y = 20x + 136     Eqn 2

For same cost,

Eqn 1 = Eqn 2

40x + 76 = 20x + 136

40x-20x = 136 - 76

20x = 60

Dividing both sides by 20

\frac{20x}{20}=\frac{60}{20}\\x=3

Hence,

The cost would be same after 3 months.

3 0
3 years ago
How do I calculate this distributive property equation:
azamat
6( 5 + 8 )

6 * 13 = 78

Your answer is 78.

Hope this helped!
6 0
3 years ago
Craig bought a 3 for long baguette and then made 4 equally sized sandwiches with it. How long, in feet, is one of Craig's sandwi
kozerog [31]
\frac{3}{4}, because its asking you to divide this.
7 0
3 years ago
Other questions:
  • Three students performed a science experiment using salt and a beaker. The beaker contained 530.2 grams of salt before the exper
    6·2 answers
  • A variety of two types of snack packs are delivered to a store. The box plots compare the number of calories in each snack pack
    15·2 answers
  • The fabric coast 7¢ per square inch she will only pay for the fabric used to cover the box, even if there is waste or extra. How
    6·1 answer
  • In 1999 bus fare in atlanta was 4.70.In 1979 the fare was 2/5 of the fare in 1999 what was the fare in 1979
    5·2 answers
  • reasoning: if you know that 9 x 20 = 180, how can you use this to find 9 x 24? explain your strategy.
    7·2 answers
  • If a right triangle has side lengths 6, 6.7 and 3, which side is the hypotenuse?
    13·1 answer
  • 2. In a given population of two-earner male-female couples, male earnings have a mean of $40,000 per year and a standard deviati
    8·1 answer
  • Amir picked 20 berries Becky picked 15 more than Amir How many berries did they picked in all
    5·2 answers
  • PLEASE HELP!! NO LINKS PLS..
    9·1 answer
  • Ship a and ship believe from the same point in the ocean
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!