Answer:
A) μ = A.m²
B) z = 0.46m
Explanation:
A) Magnetic dipole moment of a coil is given by; μ = NIA
Where;
N is number of turns of coil
I is current in wire
A is area
We are given
N = 300 turns; I = 4A ; d =5cm = 0.05m
Area = πd²/4 = π(0.05)²/4 = 0.001963
So,
μ = 300 x 4 x 0.001963 = 2.36 A.m².
B) The magnetic field at a distance z along the coils perpendicular central axis is parallel to the axis and is given by;
B = (μ_o•μ)/(2π•z³)
Let's make z the subject ;
z = [(μ_o•μ)/(2π•B)] ^(⅓)
Where u_o is vacuum permiability with a value of 4π x 10^(-7) H
Also, B = 5 mT = 5 x 10^(-6) T
Thus,
z = [ (4π x 10^(-7)•2.36)/(2π•5 x 10^(-6))]^(⅓)
Solving this gives; z = 0.46m =
Yes it does.
On the periodic table, tin is #50 and Mercury is # 80.
Answer
given,

t = 3 s
we know,


position of the particle

integrating both side


Position of the particle at t= 3 s

x = 182.98 ft
Distance traveled by the particle in 3 s is equal to 182.98 ft
now, particle’s acceleration



at t= 3 s

a = 2.98 ft/s²
acceleration of the particle is equal to 2.98 ft/s²
Answer:
He sees the light as 1c
Explanation:
According to relativity, the speed of light is the same in all inertial frame of reference.
If we were to add the velocities as applicable to a normal moving bodies, the relative speed of the light beam will exceed c which will break relativistic law since nothing can go past the speed of light.