Thank you for posting your question here at brainly. I hope the answer will help you. Below is the solution. Feel free to ask more question.
<span>torque = rF
= 0.1(10)
=1 Nm</span>
Answer:
λ = 6.602 x 10^(-7) m
Explanation:
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;
y = mλD/d
Where;
D is the distance of the screen from the slits = 6.2 m
d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m
The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
y = mλD/d
So, λ = dy/mD
Thus,
λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)
λ = 6.602 x 10^(-7) m
The first thing you should do for this case is to find the horizontal and vertical components of the forces acting on the body.
We have then:
Horizontal = 9-9.2cos (58) = 4.124742769 N.
Vertical = 9.2sin (58) = 7.802042485 N
Then, the resulting net force is:
F = √ ((4.124742769) ^ 2 + (7.802042485) ^ 2) = 8.825268826 N
Then by definition:
F = m * a
Clearing the acceleration:
a = F / m
a = (8.825268826) / (3.0) = 2.941756275 m / s ^ 2
answer:
The magnitude of the body's acceleration is
2.941756275 m / s ^ 2
The acceleration of the car,

Here, v is final velocity, u is initial velocity and t is time taken by the car.
Given
,
and 
Therefore, from above equation
.
Here, negative sign shows deceleration of a car.
Thus the the magnitude of car acceleration is
.