Answer:
The coefficient of Ca(OH)2 is 1
Explanation:
Step 1: unbalanced equation
Ca(OH)2 + HNO3 → Ca(NO3)2 + H2O
Step 2: Balancing the equation
On the right side we have 2x N (in Ca(NO3)2 ) and 1x N on the left side (in HNO3). To balance the amount of N on both sides, we have to multiply HNO3 by 2.
Ca(OH)2 + 2HNO3 → Ca(NO3)2 + H2O
On the left side we have 4x H (2xH in Ca(OH)2 and 2x H in HNO3), on the right side we have 2x H (in H2O). To balance the amount of H on both sides, we have to multiply H2O on the right side, by 2.
Now the equationis balanced.
Ca(OH)2 + 2HNO3 = Ca(NO3)2 + 2H2O
The coefficient of Ca(OH)2 is 1
You must remember that oxidation number of hydrogen in acids is always +1, oxidation number of oxygen in oxides & acids is always -2... metals has always oxidation number on plus!
group NO3 comes from HNO3...and oxidation number of whole acid group is always on minus and equal to the amount of hydrogen atoms in this acid... so oxidation number of NO3 = -1
we have 2 NO3 groups so 2*(-1) = -2 and that is the reason why oxidation number of Fe in this formula must be +2... because sum of all elements always gives 0!
Now we could count of oxidation number for nitrogen... we write HNO3 and start counting from right to left:
3*(-2) from oxygens + 1 from hydrogen = -5
so nitrogen must have +5 oxidation number... because sum all in formula must be 0.
To count the number of valence electrons we look at the electronic configuration and add the electrons form the electronic shell with the highest principal quantum number.
Rb: [Kr] 5s¹ - 1 valence electron
Xe: [Kr] 5s² 4d¹⁰ 5p⁶ - 8 valence electrons
Sb: [Kr] 5s² 4d¹⁰ 5p³ - 5 valence electrons
I: [Kr] 5s² 4d¹⁰ 5p⁵ - 7 valence electrons
In: [Kr] 5s² 4d¹⁰ 5p¹ - 3 valence electrons
Rank from most to fewest valence electrons:
Xe > I > Sb > In > Rb
1) The trails left by an electron as it moves around the nucleus
The electron model dictates that the electrons have no fixed position so it traces their path.
2) 8
Atomic number is equivalent to proton number
3) Its mass is lowered, but it is still the same element.
The element's identity is due to the number of protons; however, neutrons play a large role in an atom's mass. Thus, the mass will decrease but the element will be the same. Such variants are called isotopes.