Answer:

Explanation:
Number of molecules of water = 
= Avogadro's number = 
Number of moles is given by


The number of moles of water is
.
I don't know what the options were but a material that is very likely going to be challenging to recognize under a microscope as a mixture is a homogeneous mixture. A homogenous mixture is uniform and thus hard to recognize as a mixture. An example is water!
A scientific model is a simplified version of some phenomenon that takes place in natural systems. A scientific model can be visual (flow charts), graphical, conceptual, or mathematical. These models are used to make predictions about how a set of conditions would change the present scenario in future. Scientific models can explain how the ongoing changes in the environment can show long term affect on our planet like the climate change. Therefore, a scientific model can be used to explain the phenomena like the effect of global air temperatures on the mean sea level around the world.
The initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C
<h3>How to calculate temperature?</h3>
The initial temperature of the copper metal can be calculated using the following formula on calorimetry:
Q = mc∆T
mc∆T (water) = - mc∆T (metal)
Where;
- m = mass
- c = specific heat capacity
- ∆T = change in temperature
According to this question, a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C. If the final temperature of water is 42.0 °C, the initial temperature of the copper is as follows:
400 × 4.18 × (42°C - 24°C) = 240 × 0.39 × (T - 24°C)
30,096 = 93.6T - 2246.4
93.6T = 32342.4
T = 345.5°C
Therefore, the initial temperature of the copper piece if a 240.0 gram piece of copper is dropped into 400.0 grams of water at 24.0 °C is 345.5°C.
Learn more about temperature at: brainly.com/question/15267055
The highest atom economy
2CO + O₂ ⇒ 2CO₂
<h3>Further explanation</h3>
Given
The reaction for the production of CO₂
Required
The highest atom economy
Solution
In reactions, there are sometimes unwanted products that can be said to be a by-product or a waste product. Meanwhile, the desired product can be said to be a useful product, which can be shown as the atom economy
of the reaction
the higher the atomic economy value of a reaction, the smaller the waste/ byproducts produced, so that less energy is wasted
The general formula:
Atom economy = (mass of useful product : mass of all reactants/products) x 100
<em>or
</em>
Atom economy = (total formula masses of useful product : total formula masses of all reactants/products) x 100
So a reaction that only produces one product will have the highest atomic value, namely the reaction in option C