1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Butoxors [25]
3 years ago
9

Use the row operations tool to solve the following system of equations, obtaining the solutions in fraction form.

Mathematics
1 answer:
Inessa05 [86]3 years ago
7 0

Answer:

x=-\frac{7}{26}, y=\frac{37}{26}, z=-\frac{21}{13}

Step-by-step explanation:

The matrix representation of the system of linear equations is:

\left(\begin{array}{ccccc}15&13&4&\vdots&8\\11&13&9&\vdots&1\\3&5&7&\vdots&-5\\8&8&2&\vdots&6\\7&5&2&\vdots&2\end{array}\right)

First apply the following row operations:

\begin{array}{c}R_{2}\to R_{2}+(-\frac{11}{15})R_{1}\\R_{3}\to R_{3}+(-\frac{1}{5})R_{1}\\R_{4}\to R_{4}+(-\frac{8}{15})R_{1}\\R_{5}\to R_{5}+(-\frac{7}{15})R_{1}\end{array}

The resulting matrix is:

\left(\begin{array}{ccccc}15&13&4&\vdots&8\\0&\frac{52}{15}&\frac{91}{15}&\vdots&-\frac{73}{15}\\0&\frac{12}{5}&\frac{31}{5}&\vdots&-\frac{33}{5}\\0&\frac{16}{15}&-\frac{2}{15}&\vdots&\frac{26}{15}\\0&-\frac{16}{15}&\frac{2}{15}&\vdots&-\frac{26}{15}\end{array}\right)

Then apply  the row operations:

\begin{array}{c}R_{3}\to R_{3}+(-\frac{12}{5}\cdot \frac{15}{52})R_{2}\\R_{4}\to R_{4}+(-\frac{-16}{15}\cdot \frac{15}{52})R_{2}\\R_{5}\to R_{5}+(\frac{16}{15}\cdot \frac{15}{52})R_{2}\end{array}

The resulting matrix is:

\left(\begin{array}{ccccc}15&13&4&\vdots&8\\0&\frac{52}{15}&\frac{91}{15}&\vdots&-\frac{73}{15}\\0&0&2&\vdots&-\frac{42}{13}\\0&0&-2&\vdots&\frac{42}{13}\\0&0&2&\vdots&-\frac{42}{13}\end{array}\right)

Now apply the row operations:

\begin{array}{c} R_{4}\to R_{4}+R_{3}\\R_{5}\to R_{5}+(-1)R_{3}\end{array}

The resulting matrix is:

\left(\begin{array}{ccccc}15&13&4&\vdots&8\\0&\frac{52}{15}&\frac{91}{15}&\vdots&-\frac{73}{15}\\0&0&2&\vdots&-\frac{42}{13}\\0&0&0&\vdots&0\\0&0&0&\vdots&0\end{array} \right)

The equivalent linear system associated to this matrix is

\begin{cases}15x+13y+4z=8\\\frac{52}{15}y+\frac{91}{15}z=-\frac{73}{15}\\2z=-\frac{42}{13}\end{cases}

To Solve this last system is very simple by substitution. The solutions are:

x=-\frac{7}{26}, y=\frac{37}{26}, z=-\frac{21}{13}

You might be interested in
⦁ Let x = 4.7 and solve both inequalities below. Show your work.
bearhunter [10]

6‎‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎‏‏‎ ‎

6 0
3 years ago
Read 2 more answers
The dress store is having a sale where all merchandise is 1/4 off. A women buys $36 of merchandise at the sale price.
Alina [70]

the answer is simple you simply multiply 36 times 4 which will give you 144. So 144 is your answer


7 0
3 years ago
Read 2 more answers
What is the smallest of 3 consecutive positive integers if the product of the smaller two integers is 5 less than 5 t imes the l
givi [52]
The answer is x= 5 
Hope this helps!
7 0
3 years ago
Read 2 more answers
What is the value of 1/2 of 2/3 of 3/4 of 4/5 of 5/6 of 6/7 of 7/8 of 8/9 of 9/10 of 1000?
Alenkasestr [34]

Answer:

it's 100

Step-by-step explanation:

9/10 of 1000 is 900, 8/9 of 900 is 800, 7/8 of 800 is 700, 6/7 of 700 is 600, 5/6 of 600 is 500, 4/5 of 500 is 400, 3/4 of 400 is 300, 2/3 of 300 is 200, and 1/2 of 200 is 100 which makes 100 the value of 1/2 of 2/3 of 3/4 of 4/5 of 5/6 of 6/7 of 7/8 of 8/9 of 9/10 of 1000? I hope this makes sense.

5 0
3 years ago
Given: ABC , BD is an<br> altitude to side AC, &amp; D is a midpoint<br> Prove: AB BC
Over [174]

Answer:

steps below

Step-by-step explanation:

BD⊥AC    ∠ADB = ∠CDB = 90°

D is mid-point: AD = CD

BD = BD

ΔADB ≅ ΔCDB

AB = BC

5 0
2 years ago
Read 2 more answers
Other questions:
  • Which values are solutions to the inequality below? Check all that apply. √x&lt;8
    9·1 answer
  • A health club increased its membership from 80 to 240 people. What is the percent increase in membership?
    13·2 answers
  • What is the 6 term of the following geometric sequence (42,6,6/7,6/49)
    9·1 answer
  • The koala is 72 meters tall.the zebra is three times as tall as the koala.the elephant is four times as tall as the zebra.how ta
    13·1 answer
  • Write an equation of the line with the given slope and y-intercept. m equals one fourth, b equals negative three fourths
    6·2 answers
  • Complete the square.<br> 3x^2-12x=96
    15·2 answers
  • Convert 0.000002954 to scientific notation
    7·2 answers
  • A triangle with one angle equal to 75° could be an equilateral triangle true or false
    11·2 answers
  • 350 is what percent of 400?
    11·2 answers
  • Please assist with following question 2, 7, 9, 10, 13
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!