1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetlanka [38]
3 years ago
14

Find the area of the figure. Use 3.14 for y, and round your answer to the nearest tenth.

Mathematics
1 answer:
Phantasy [73]3 years ago
3 0

pls give me brainliest :)

Answer:

B.) 36.3 sq. yd

Step-by-step explanation:

To find the area of a rectangle is l x w (length multiplied by width) The length of the rectangle is 6 yards and the width is 4.

6 x 4= 24

Now you need to find the area of a triangle. To find the bottom or base of the triangle you must subtract 6 from 9. (6 being the top of the rectangle and 9 being the base.) which should give you 3. Now that we have the base of the triangle we can find the area of the triangle using the formula which is b x h/ 2 (base multiplied by height divided by 2) b= 3 and h= 4. 3 x 4= 12 divided by 2  equals 6.

Last we need to find the area of the half circle, based off the side of the rectangle we can say the diameter of the circle is 4. The radius is half of the diameter 4/2 = 2. The formula to find the area of a circle is A= πr^2

π(2^2) = 12.57 and because its a half circle we divide it by 2 which equals 6.285

Now we add all the areas of each shape so, 24+6+6.285 which equals 36.3

Answer = B.) 36.3

pls give me brainliest :)

You might be interested in
Brooks built two similar wooden chests in the shape of rectangular prisms. She used 16 pints of paint to cover the outside of th
Anika [276]
The choices for this question is found elsewhere and as follows:

<span>A. 16/9 B. 4/3 C. 32/9 D. 64/27
</span>
From the choices, i think the correct answer from the choices listed above is option B since from the situation you are reducing the ratio. Hope this answers the question.
7 0
3 years ago
Which expression represents 4 less than twice a number, n?
andrew-mc [135]

Answer:

x = 2n - 4

Step-by-step explanation:

hope this helped have a great day

3 0
3 years ago
Read 2 more answers
Hurry A lot of Points on the Line!
Tatiana [17]

Answer:

c

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Solve for n: 3(n+6)≥3n+8
hodyreva [135]

Answer:

infinite solutions

Step-by-step explanation:

3(n+6)≥3n+8

3n+18≥3n+8 (distributive property)

18≥8 (subtracted 3n from both sides)

this will always be true so there are infinite solutions

7 0
3 years ago
Read 2 more answers
Find the derivative: y={ (3x+1)cos(2x) } / e^2x​
DochEvi [55]

Answer:

\displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring
  • Exponential Rule [Dividing]:                                                                         \displaystyle \frac{b^m}{b^n} = b^{m - n}
  • Exponential Rule [Powering]:                                                                       \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule:                                                                                                         \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Quotient Rule:                                                                                                       \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Trig Derivative:                                                                                                       \displaystyle \frac{d}{dx}[cos(u)] = -u'sin(u)

eˣ Derivative:                                                                                                         \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{(3x + 1)cos(2x)}{e^{2x}}

<u>Step 2: Differentiate</u>

  1. [Derivative] Quotient Rule:                                                                           \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - \frac{d}{dx}[e^{2x}](3x + 1)cos(2x)}{(e^{2x})^2}
  2. [Derivative] [Fraction - Numerator] eˣ derivative:                                       \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{(e^{2x})^2}
  3. [Derivative] [Fraction - Denominator] Exponential Rule - Powering:         \displaystyle y' = \frac{\frac{d}{dx}[(3x + 1)cos(2x)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  4. [Derivative] [Fraction - Numerator] Product Rule:                                       \displaystyle y' = \frac{[\frac{d}{dx}[3x + 1]cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  5. [Derivative] [Fraction - Numerator] [Brackets] Basic Power Rule:             \displaystyle y' = \frac{[(1 \cdot 3x^{1 - 1})cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  6. [Derivative] [Fraction - Numerator] [Brackets] (Parenthesis) Simplify:       \displaystyle y' = \frac{[3cos(2x) + \frac{d}{dx}[cos(2x)](3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  7. [Derivative] [Fraction - Numerator] [Brackets] Trig derivative:                   \displaystyle y' = \frac{[3cos(2x) -2sin(2x)(3x + 1)]e^{2x} - 2e^{2x}(3x + 1)cos(2x)}{e^{4x}}
  8. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{e^{2x}[(3cos(2x) -2sin(2x)(3x + 1)) - 2(3x + 1)cos(2x)]}{e^{4x}}
  9. [Derivative] [Fraction] Simplify [Exponential Rule - Dividing]:                     \displaystyle y' = \frac{3cos(2x) -2sin(2x)(3x + 1) - 2(3x + 1)cos(2x)}{e^{2x}}
  10. [Derivative] [Fraction - Numerator] Factor:                                                   \displaystyle y' = \frac{3cos(2x) -2(3x + 1)[sin(2x) + cos(2x)]}{e^{2x}}

Topic: AP Calculus AB/BC

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • How many real solutions does a quadratic equation have if it's discrimination is zero
    13·2 answers
  • Express the following in scientific notation: 0.0000079
    11·2 answers
  • Jane went to the grocery store with $10 in her pocket. She wants to purchase as many 12-packs of soda that she can. One 12-pack
    13·2 answers
  • I WILL AWARD BRAINLIEST!! PLEASE HELP!!
    5·1 answer
  • What is VAT @ 13.5% on 157.46
    6·1 answer
  • I need help ASAP
    6·1 answer
  • If a man spends approximately 45% of his income on air travel and his sister only spends about 2% of her income on air travel (a
    8·1 answer
  • The perimeter of the regular polygon shown is 14 ft.
    10·1 answer
  • Help me asap pleaseeeeeeeeeeeeeeeeeee !!
    14·1 answer
  • Select the equivalent expression. I will be giving Brainliest​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!