The resultant force is 8N
Given that mass is 2kg , v= 40m/s, u =20m/s and we need to calculate resultant force
F=ma
m is given
so for a
v-u/t=a { first equation of motion }
40-20/4= 4
so a=4
F = ma =2*4 = 8N
The difference between the forces that are acting on an object as part of a system is known as the resultant force.
v = u + at is the first equation of motion. Here, v denotes the end speed, u the starting speed, an acceleration, and t the passage of time. The first equation of motion is provided by the velocity-time relation, which may be used to calculate acceleration.
To learn more about resultant force please visit -
brainly.com/question/22260425
#SPJ1
Answer:
Option B
It converts light into electric current
Explanation:
A photometer is a device used to measure illuminance
Its principle of operation hinges on the conversion of light into electric current, using photoresistor or any other light sensitive device such as a photodiode. This is so that it can be read off easily by any other device.
A Photoresistor is a device that changes the flow of current through it when it is exposed to light rays. A photometer works by irradiating a photo resistor, which then converts the light rays incident on it to electric current.
Answer:
t = T/4
Explanation:
The power delivered to the mass by the spring is work done by the spring per second.

The work done by the spring is equal to the elastic potential energy stored in the spring.

The maximum energy stored in the spring is at the amplitude of the oscillation.

So the first time the mass reaches to its amplitude can be found by the following equation of motion:

When the mass reaches the amplitude:

because cos(π) = 1.

Using ω = 2π/T,

You could be counting while running
The second problem requires a figure to be answered. For the first problem
The acceleration of the sack is
1.5² - 0² = 2a(0.2)
a = 5.63 m/s2
The reaction of the ramp is
F = 8 kg (5.63 m/s2)
F = 45 N
Differentiate the kinematic equation involving time to get the rate of increase of the velocity.