Before going to answer this question first we have to know the fundamental principle of magnetism.
A magnet have two poles .The important characteristic of a magnet is that like poles will repel each other while unlike poles will attract each other.
Through this concept the question can be answered as explained below-
A-As per first option the side of magnet A is repelled by the south pole of magnet B. Hence the pole of a must be south .It can't be north as it will lead to attraction.
B-The side of magnet A is repelled by the north pole of magnet B. Hence the side of A must be north pole.It can't be a south pole.
C-The side of magnet A is attracted by the south pole of magnet B .Hence the side of magnet A must be north.Hence this is right
D-The side of magnet A is attracted by the north pole of magnet B. Hence the side of A must south.It can't be north as it will lead to repulsion.
Hence the option C is right.
Answer:
The dynamo has a wheel that touches the back tyre. As the bicycle moves, the wheel turns a magnet inside a coil. This induces enough electricity to run the bicycle's lights. The faster the bicycle moves, the greater the induced voltage - and the brighter the lights.
Atomic number is equal to the number of protons and electrons
Atomic mass - protons = neutrons
protons + neutrons = atomic mass
I hope this helps
Your lungs aren’t the ones that make the sound
By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x 
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
=
+ 2as
=
+ 2 x 0.3 x 61
= 36 + 36
= 72
V = 
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617