dimension = 30.0 m ✕ 15.0 m ✕ 5.0 m.
density = 1.20 kg/m3
(a)volume = lenght * breadth * height
= 30 * 15 * 5
= 2250 metre cube = 2.25 cubic meter
(b) mass of air = density * volume
mass of air = 1.2 * 2250
mass of air = 2700kg
weight = mass * 9.8
= 2700 * 9.8
= 26,460 N
- The definition of Density is the amount of matter in a given space, or volume
- Density = mass/volume
- units for density kg/m^3
- Density of water 1g/ml
- Salt water is denser that is why don't sink as easily.
To know more about density visit : brainly.com/question/15164682
#SPJ4
Increase in sea water pollution
A. True. You can use displacement to determine the volume of solids and liquids.
Answer:
the object will travel 0.66 meters before to stop.
Explanation:
Using the energy conservation theorem:

The work done by the friction force is given by:
![W_f=F_f*d\\W_f=\µ*m*g*d\\W_f=0.35*4*9.81*d\\W_f=13.7d[J]](https://tex.z-dn.net/?f=W_f%3DF_f%2Ad%5C%5CW_f%3D%5C%C2%B5%2Am%2Ag%2Ad%5C%5CW_f%3D0.35%2A4%2A9.81%2Ad%5C%5CW_f%3D13.7d%5BJ%5D)
so:

Answer:
Explanation:
a. The equation of Lorentz transformations is given by:
x = γ(x' + ut')
x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.
x' = 0
t' = 5.00 s
u =0.800 c,
c is the speed of light = 3×10⁸ m/s
Then,
γ = 1 / √ (1 - (u/c)²)
γ = 1 / √ (1 - (0.8c/c)²)
γ = 1 / √ (1 - (0.8)²)
γ = 1 / √ (1 - 0.64)
γ = 1 / √0.36
γ = 1 / 0.6
γ = 1.67
Therefore, x = γ(x' + ut')
x = 1.67(0 + 0.8c×5)
x = 1.67 × (0+4c)
x = 1.67 × 4c
x = 1.67 × 4 × 3×10⁸
x = 2.004 × 10^9 m
x ≈ 2 × 10^9 m
Now, to find t we apply the same analysis:
but as x'=0 we just have:
t = γ(t' + ux'/c²)
t = γ•t'
t = 1.67 × 5
t = 8.35 seconds
b. Mavis reads 5 s on her watch which is the proper time.
Stanley measured the events at a time interval longer than ∆to by γ,
such that
∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)
c. According to Stanley,
dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m
which is the same as in part (a)