Answer:
46g of sodium acetate.
Explanation:
The data is: <em>Precipitation from a supersaturated sodium acetate solution. The solution on the left was formed by dissolving 156g of the salt in 100 mL of water at 100°C and then slowly cooling it to 20°C. Because the solubility of sodium acetate in water at 20°C is 46g per 100mL of water, the solution is supersaturated. Addition of a sodium acetate crystal causes the excess solute to crystallize from solution.</em>
The third solution is the result of the equilibrium in the solution at 20°C. As the maximum quantity that water can dissolve of sodium acetate at this temperature is 46g per 100mL and the solution has 100mL <em>there are 46g of sodium acetate in solution. </em>The other sodium acetate precipitate because of decreasing of temperature.
I hope it helps!
Answer:
The mass of
in the container is 2.074 gram
Explanation:
Given:
Volume of
lit
Equilibrium constant 
The reaction in which
is produced
⇄ 
Here equal moles of
and
is formed.
From the formula of equilibrium constant,


M
Above value shows,

So in 2 L no. moles of
=
moles.
So mass of 0.122 mole of
is =
g
Therefore, the mass of
in the container is 2.074 gram
When the work is being done, it is likely that there is an energy being enforced and when the energy is being enforced, it is likely that the energy present is being transferred in order for the work to be able to be able to be exterted upon
Molecular weight it stands for molecular weight