<span>On the periodic table, the majority of elements are classified as "Metals"
In short, Your Answer would be Option A
Hope this helps!</span>
The amount of current required to produce 75. 8 g of iron metal from a solution of aqueous iron (iii)chloride in 6. 75 hours is 168.4A.
The amount of Current required to deposit a metal can be find out by using The Law of Equivalence. It states that the number of gram equivalents of each reactant and product is equal in a given reaction.
It can be found using the formula,
m = Z I t
where, m = mass of metal deposited = 75.8g
Z = Equivalent mass / 96500 = 18.6 / 96500 = 0.0001
I is the current passed
t is the time taken = 75hour = 75 × 60 = 4500s
On subsituting in above formula,
75.8 = E I t / F
⇒ 75.8 = 0.0001 × I × 4500
⇒ I = 168.4 Ampere (A)
Hence, amount of current required to deposit a metal is 168.4A.
Learn more about Law of Equivalence here, brainly.com/question/13104984
#SPJ4
<u>Answer:</u> The density of substance is 
<u>Explanation:</u>
To calculate density of a substance, we use the equation:

We are given:
Mass of substance = 61.6 g
Volume of substance = 
Putting values in above equation, we get:

Hence, the density of substance is 
Answer: Benzaldahyde
Explanation: the C₆H₅- represents the substituted benzene ring and the
CHO should represent the functional group of aldehyde