At -25 °C, methanol, whose boiling point is 64.7 °C and its melting point is -97.6 °C, is in the liquid state.
The melting point is the temperature at which a substance passes from solid to liquid. Below the melting point, a substance is in the solid state. Above the melting point, a substance is in the liquid or gas state.
The boiling point is the temperature at which a substance passes from liquid to gas. Below the boiling point, a substance is solid or liquid. Above the boiling point, a substance is in the gas state.
At -25 °C, methanol is above the melting point (-97.6 °C) and below the boiling point (64.7 °C). Thus, it is in the liquid state.
At -25 °C, methanol, whose boiling point is 64.7 °C and its melting point is -97.6 °C, is in the liquid state.
You can learn more about the melting and boiling points here: brainly.com/question/5753603?referrer=searchResults
Answer:
I think it is AM and frequency
Explanation:
Sorry if i'm wrong ;)
Explanation:
South America land mass serves as a deflector for the South equatorial current. This deflection the current causes them to move in a different direction. If the Continent were not present the direction of the South equatorial current would not change and it would continue to flow in the west.
The intermolecular forces that are responsible for the dissolution of Ethylene glycol in water is hydrogen bonding dipole-dipole forces and dispersion forces.
Both ethylene glycol and water contains the pair of hydrogen and oxygen.
The hydrogen of one atom create a bond with the oxygen of other atom this results in the formation of intra molecular hydrogen bonding.
The electron are non uniformly distributed over the molecule or the atom which results in the fluctuation of the electron density in the atom.
So it creates are dispersion forces which is present all over the molecule this forces helps to increase the strength of the bond formed between the ethylene glycol and water because they have large masses.
Both ethylene glycol and water are polar molecules because of being polar they form dipole and the dipole of both the molecules interact with each other in order to form bond between the atoms which eventually results in the formation dissolution of ethylene glycol in water.
To know more about intermolecular forces, visit,
brainly.com/question/2193457
#SPJ4
Compete Question - which intermolecular forces are responsible for the dissolution of ethylene glycol? select all that apply hydrogen bonding, dipole-dipole, dispersion and Ion dipole interaction.
Answer:
A high pressure system has higher pressure at its center than the areas around it. Winds blow away from high pressure. Swirling in the opposite direction from a low pressure system, the winds of a high pressure system rotate clockwise north of the equator and counterclockwise south of the equator.