Answer:
<h2>18 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 6 × 3
We have the final answer as
<h3>18 N</h3>
Hope this helps you
Answer:
1. 
2. 
Explanation:
1. According to Newton's law of motion, the puck motion is affected by the acceleration, which is generated by the push force F.
In Newton's 2nd law: F = ma
where m is the mass of the object and a is the resulted acceleration. So in the 2nd experiment, if we double the mass, a would be reduced by half.

Since the puck start from rest, in the 1st experiment, to achieve speed of v it would take t time

Now that acceleration is halved:


You would need to push for twice amount of time 
2. The distance traveled by the puck is as the following equation:

So if the acceleration is halved while maintaining the same d:

As
, then
. Also 



So t increased by 1.14
Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
To find the answer, plot down the factors for every number.
12: 1, 2 ,3 ,4, 6, 12
18: 1, 2, 3, 6, 9, 18
84: 1, 2, 3, 4, 6, 7, 12
If you noticed, the number that was common to the 3 numbers, were 1, 2, 3, and 6
And 6 is the bigger number
So 6 is your GCF