Evidence: Data gathered
Experiment: Looking through a telescope
Observations: Testing what happens
Reasoning: Thinking a problem through
I believe that these should be correct.
Hoping you pass!
Answer:
1) True, 2) True, 3) False, 4) False, 5) False
Explanation:
1) True. Dissipative energy cannot be recovered, in general it is a form of heat
2) True. The dissipation can be by radiation, heat
3) False. Mechanical energy is divided into K and U but not in equal parts
4) False. When there are dissipative interactions, part of the mechanical energy is set in the form of heat, so its value decreases
5) False. Mechanical energy is the sum of those two energies
Positive. The 1st object loses electrons and will thus have an imbalance of charge with loss of electrons.
Answer:
The distance is
Explanation:
From the question we are told that
The initial speed of the electron is 
The mass of electron is 
Let
be the distance between the electron and the proton when the speed of the electron instantaneously equal to twice the initial value
Let
be the initial kinetic energy of the electron \
Let
be the kinetic energy of the electron at the distance
from the proton
Considering that energy is conserved,
The energy at the initial position of the electron = The energy at the final position of the electron
i.e

are the potential energy at the initial position of the electron and at distance d of the electron to the proton
Here 
So the equation becomes

Here
are the charge on the electron and the proton and their are the same since a charge on an electron is equal to charge on a proton
is electrostatic constant with value 
i.e
is the velocity at distance d from the proton = 2
So the equation becomes

![\frac{1}{2} mv_i^2 = 4 [\frac{1}{2}mv_i^2 ]- \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20mv_i%5E2%20%20%3D%204%20%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D-%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
![3[\frac{1}{2}mv_i^2 ] = \frac{k(q)^2}{d}](https://tex.z-dn.net/?f=3%5B%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%20%5D%20%3D%20%5Cfrac%7Bk%28q%29%5E2%7D%7Bd%7D)
Making d the subject of the formula



Answer:71 dB
Explanation:
Given
sound Level 
distance 
From sound Intensity





we know Intensity 




Sound level corresponding to 


