It totally depends on what kind of wave you're talking about.
-- a sound wave from a trumpet or clarinet playing a concert-A pitch is about 78 centimeters long ... about 2 and 1/2 feet. This is bigger than atoms.
-- a radio wave from an AM station broadcasting on 550 KHz, at the bottom of your radio dial, is about 166 feet long ... maybe comparable to the height of a 10-to-15-story building. This is bigger than atoms.
-- a radio wave heating the leftover meatloaf inside your "microwave" oven is about 4.8 inches long ... maybe comparable to the length of your middle finger. this is bigger than atoms.
-- a deep rich cherry red light wave ... the longest one your eye can see ... is around 750 nanometers long. About 34,000 of them all lined up will cover an inch. These are pretty small, but still bigger than atoms.
-- the shortest wave that would be called an "X-ray" is 0.01 nanometer long. You'd have to line up 2.5 billion of <u>those</u> babies to cover an inch. Hold on to these for a second ... there's one more kind of wave to mention.
-- This brings us to "gamma rays" ... our name for the shortest of all electromagnetic waves. To be a gamma ray, it has to be shorter than 0.01 nanometer.
Talking very very very very roughly, atoms range in size from about 0.025 nanometers to about 0.26 nanometers.
The short end of the X-rays, and on down through the gamma rays, are in this neighborhood.
Answer:
The distance between them, x = 5809.47 m
Explanation:
Given,
The average weight of a human, w = 600 N
The charge carried by the humans, q = 1.5 C
If 600 N of force acts between two opposite charges, the distance between the charges can be derived from the Coulomb's laws of force,
<em>
</em>
Where,
= 9 x 10⁹ N m² C⁻²
Therefore
x² = 9 x 10⁹ X 1.5² / 600
= 33750000
x = 5809.46 m
Hence, the distance between the humans should be, x = 5809.47 m
Explanation:
To find the resultant force subtract the magnitude of the smaller force from the magnitude of the larger force. The direction of the resultant force is in the same direction as the larger force
Answer:
False.
Explanation:
Mechanical waves require a medium in order to transport their energy from one location to another.
Vertical force on the box=mg
<span>the component of gravity parallel=mg*SinTheta </span>
<span>the component of gravity normal=mg*CosTheta </span>
<span>frictional force up the plane: mg*cosTheta*mu max, but if it is sitting still, it is equal and opposite to mg*cosTheta (it cannot be greater than this or it would go up the plane).</span>