Answer:
A scalar quantity is defined as the physical quantity that has only magnitude, for example, mass and electric charge. On the other hand, a vector quantity is defined as the physical quantity that has both magnitude as well as direction like force and weight.
Answer:
A) a = 2.31[m/s^2]; B) t = 14.4 [s]
Explanation:
We can solve this problem using the kinematic equations, but firts we must identify the data:
Vf= final velocity = take off velocity = 120[km/h]
Vi= initial velocity = 0, because the plane starts to move from the rest.
dx= distance to run = 240 [m]
![v_{f} ^{2} =v_{i} ^{2}+2*g*dx\\where:\\v_{f}=120[\frac{km}{h} ]*\frac{1hr}{3600sg} * \frac{1000m}{1km} =33.33[m/s]\\\\Replacing\\33.33^{2}=0+2*a*(240)\\ a=\frac{11108.88}{2*240}\\ a=2.31[m/s^2]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%20%3Dv_%7Bi%7D%20%5E%7B2%7D%2B2%2Ag%2Adx%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%3D120%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A%5Cfrac%7B1hr%7D%7B3600sg%7D%20%2A%20%5Cfrac%7B1000m%7D%7B1km%7D%20%3D33.33%5Bm%2Fs%5D%5C%5C%5C%5CReplacing%5C%5C33.33%5E%7B2%7D%3D0%2B2%2Aa%2A%28240%29%5C%5C%20a%3D%5Cfrac%7B11108.88%7D%7B2%2A240%7D%5C%5C%20%20a%3D2.31%5Bm%2Fs%5E2%5D%5C%5C)
To find the time we must use another kinematic equation.
![v_{f} =v_{i} +a*t\\replacing:\\33.33=0+(2.31*t)\\t=\frac{33.33}{2.31}\\ t=14.4[s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Creplacing%3A%5C%5C33.33%3D0%2B%282.31%2At%29%5C%5Ct%3D%5Cfrac%7B33.33%7D%7B2.31%7D%5C%5C%20t%3D14.4%5Bs%5D)
Answer:
<em>The final speed of the second package is twice as much as the final speed of the first package.</em>
Explanation:
<u>Free Fall Motion</u>
If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

And the distance traveled downwards is:

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

Replacing into the first equation:

Rationalizing:

Let's call v1 the final speed of the package dropped from a height H. Thus:

Let v2 be the final speed of the package dropped from a height 4H. Thus:

Taking out the square root of 4:

Dividing v2/v1 we can compare the final speeds:

Simplifying:

The final speed of the second package is twice as much as the final speed of the first package.
Answer:
a. 11 m/s at 76° with respect to the original direction of the lighter car.
Explanation:
In this exercise, since both cars make a right angle, let's assume that the lighter car only has a horizontal velocity component (vx) and that the heavier one only has a vertical velocity component (vy). The final velocities for both components for the system can be determined as:

Assume that the lighter car has a 1kg mass and that the heavier car has a 4 kg mass.

The magnitude of the final velocity of the wreck can be found as:
![v_{f}^{2}= v_{fx}^{2}+ v_{fy}^{2}\\v_{f}=\sqrt[]{2.6^{2} + 10.4^{2}} \\v_{f}= 10.72](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bfx%7D%5E%7B2%7D%2B%20v_%7Bfy%7D%5E%7B2%7D%5C%5Cv_%7Bf%7D%3D%5Csqrt%5B%5D%7B2.6%5E%7B2%7D%20%2B%2010.4%5E%7B2%7D%7D%20%5C%5Cv_%7Bf%7D%3D%2010.72)
The final velocity has an intensity of roughly 11 m/s
As for the angle, it can be determined in respect to the lighter car (x axis) as follows:

Therefore, the wreck has a velocity with an intensity of 11 m/s at 76° with respect to the original direction of the lighter car.