From ideal gas law, PV=nRT
where P is the pressure, V is the volume of the container, n is number of moles, R is the gas constant and T is the temperature.
Hence, 
T= 110.65 k
Kinetic Energy = 
K.E= 
<h3>What is a kinetic energy? </h3>
The energy an object has as a result of motion is known as kinetic energy.
A force must be applied to an object in order to accelerate it. We must put in effort in order to apply a force. After the work is finished, energy is transferred to the item, which then moves at a new, constant speed. Kinetic energy is the type of energy that is transferred and is dependent on the mass and speed attained.
Kinetic energy can be converted into other types of energy and transported between objects. A flying squirrel may run into a chipmunk that is standing still, for instance. Some of the squirrel's initial kinetic energy may have been transferred to the chipmunk or changed into another kind of energy after the collision.
To know more about kinetic energy, visit:
brainly.com/question/22174271
#SPJ4
Answer:
A. The particle model, because only high-energy frequencies of light can remove electrons .
Explanation:
Each photon of blue light has higher energy than each photon of red light has . So when each photon strikes each electron , it gets ejected . But the photon of red light has not sufficient energy to eject electron . Once the photon of red light strikes the electron , the energy is wasted off . Energy of photon can not be accumulated . Thus photon behaves like particle .
Answer:
L = 2.8 cm
Explanation:
Period T = 4 / 12 = 1/3 s
T = 2π√(L/g)
L = (T/2π)²g
L = ((1/3)/2π)²9.8 = 0.02758... ≈ 2.8 cm
Static friction is the friction that exists between two or more solids that are not moving with a relative speed. To calculate the static friction coefficient we use the formula Fs=us × n where Fs is the static friction , us is the coefficient of static friction and the n is the normal force.
thus the coefficient of static friction will be 5 N÷ 25 N = 0.2
Hence 0.2 is the coefficient of static friction
The gas planets usually have extremely high gravitational pulls, the surface isn't solid (since its a gas planet), and gas planets are larger than the inner planets.
<span>Similarities- These planets all have moons and they both revolve around the sun (obviously).
Hope this helps.</span>