I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Answer:
<h2>The answer is 12 m</h2>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
distance = velocity × time
From the question we have
distance = 2 × 6
We have the final answer as
<h3>12 m</h3>
Hope this helps you
The car traverses a distance
after time
according to

where
is its acceleration, 10 m/s^2. The time it takes for the car to travel 25 m is

5 is pretty close to 4, so we can approximate the square root of 5 by 2. Then the car's velocity
after 2 s of travel is given by

which makes C the most likely answer.
The speed of light is......299 792 458 m / s
Answer:
Unknown
Explanation:
By definition, we can't observe what's inside there, because no light – no information of any kind – can escape a black hole. But astrophysical theories suggest that, at the core of a black hole, all the black hole's mass is concentrated into a tiny point of infinite density. This point is known as a singularity.