1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
3 years ago
10

The coordinates of a bird flying in the xy-plane are given by x(t)=αt and y(t)=3.0m−βt2, where α=2.4m/s and β=1.2m/s2.part a:Cal

culate the velocity vector of the bird as a function of time. Give your answer as a pair of components separated by a comma. For example, if you think the xcomponent is 3 and the y component is 4, then you should enter 3,4.
part b:Calculate the acceleration vector of the bird as a function of time. Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4
Physics
1 answer:
8090 [49]3 years ago
3 0
Α=2.4 \frac{m}{s}

β=1.2 \frac{m}{s^2}

x(t)=at

y(t)=3-βt^2

Vx(t)=α

Vy(t)=-2βt

vectorV=[α;-2βt]

ax(t)=0

ay(t)=-2βt

vector a [0;-2βt]


You might be interested in
A 45.00 kg person in a 43.00 kg cart is coasting with a speed of 19 m/s before it goes up a hill. there is no friction, what is
HACTEHA [7]

Answer:

the maximum vertical height the person in the cart can reach is 18.42 m

Explanation:

Given;

mass of the person in cart, m₁ = 45 kg

mass of the cart, m₂ = 43 kg

acceleration due to gravity, g = 9.8 m/s²

final speed of the cart before it goes up the hill, v = 19 m/s

Apply the principle of conservation of energy;

mgh_{max} = \frac{1}{2}mv^2_{max}\\\\ gh_{max} = \frac{1}{2}v^2_{max}\\\\h_{max} = \frac{v^2_{max}}{2g} \\\\h_{max} =\frac{(19)^2}{2\times 9.8} \\\\h_{max} = 18.42 \ m

Therefore, the maximum vertical height the person in the cart can reach is 18.42 m

5 0
3 years ago
two charges having the same charge magnitude experiencing an attracting force of 3.60N when the charges are 30cm apart.what is t
Tomtit [17]

The charges have opposite sign and magnitude 6 \mu C

Explanation:

The magnitude of the electrostatic force between two electric charges is given by Coulomb's law:

F=k\frac{q_1 q_2}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q_1, q_2 are the two charges

r is the separation between the two charges

In this problem, we have:

F = 3.60 N is the force between the two charges

r = 30 cm = 0.30 m is their separation

The two charges have same magnitude, so

q_1 = q_2 = q

So we can rewrite the equation as

F=\frac{kq^2}{r^2}

And solving for q:

q=\sqrt{\frac{Fr^2}{k}}=\sqrt{\frac{(3.60)(0.30)^2}{8.99\cdot 10^9}}=6\cdot 10^{-6} C = 6\mu C

Moreover, the force between the charges is attractive: we know that charges of same sign repel each other while charges of opposite sign attract each other, therefore the charges in this problem have opposite sign, so

q_1 = 6 \mu C\\q_2 = -6 \mu C

Learn more about electric force:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

3 0
3 years ago
A large sheet of charge has a uniform charge density of 9  μCm2. What is the electric field due to this charge at a point just
Alex73 [517]

Answer:

Explanation:

Surface charge density, σ = 9 μC/m² = 9 x 10^-6 C/m²

According to the Gauss theorem,

Electric field due to the sheet is given by

E = \frac {\sigma }{2\epsilon _{0}}

E = \frac{9\times 10^{-6}}{2\times 8.854\times 10^{-12}}

E = 5.08 x 10^5 N/C

7 0
3 years ago
When the spacecraft is at the halfway point, how does the strength of the gravitional force on the spaceprobe by Earth compre wi
mixer [17]

Solution :

When the spacecraft is at halfway point, the distance from the Earth as well as Mars are same. We have to account the masses of the planets. The gravitational force that is exerted by the Earth is greater because of its combined mass with the space probe.

The mass of Earth is greater than the mass of Mars. Therefore, the force of Earth is more than Mars.

5 0
3 years ago
A .5kg bird is perched on its nest so that it has 50J of potential energy. how far is it off the of the ground?
pshichka [43]

It is 10.20 m from the ground.

<u>Explanation:</u>

<u>Given:</u>

m = 0.5 kg

PE = 50 J

We know that the Potential energy is calculated by the formula:

P. E = m \times g \times h

where m is the is mass in kg;  g  is acceleration due to gravity which is 9.8 m/s  and  h  is height in meters.

PE is the Potential Energy.

Potential Energy is the amount of energy stored when an object is stationary.

Here, if we substitute the values in the formula, we get

P. E = m \times g \times h

50 = 0.5 × 9.8 × h

50 = 4.9 × h

h = \frac {50} {4.9}

h = 10.20 m

3 0
3 years ago
Other questions:
  • What conclusion does the student most likely make based
    6·2 answers
  • A vacuum tube diode consists of concentric cylindrical electrodes, the negative cathode and the positive anode. Because of the a
    11·1 answer
  • What would be the magnitude of an earthquake 100 km away that produced 100 mm of amplitude
    11·2 answers
  • Compare the strong and weak megnetic field
    10·1 answer
  • If Q = 16 nC, a = 3.0 m, and b = 4.0 m, what is the magnitude of the electric field at point P?
    9·1 answer
  • Balance the following chemical equations
    14·1 answer
  • Which of the following statements best represents a comparison of the two motions shown on the graph?
    8·1 answer
  • Which is an example of a mixture?
    10·2 answers
  • The energy wasted in using a machine is 600j. if the machine is 70% efficient. calculate the volume of water pumb by the machine
    14·1 answer
  • As of 2022, what is the total population of the planet?.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!