1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
4 years ago
10

The coordinates of a bird flying in the xy-plane are given by x(t)=αt and y(t)=3.0m−βt2, where α=2.4m/s and β=1.2m/s2.part a:Cal

culate the velocity vector of the bird as a function of time. Give your answer as a pair of components separated by a comma. For example, if you think the xcomponent is 3 and the y component is 4, then you should enter 3,4.
part b:Calculate the acceleration vector of the bird as a function of time. Give your answer as a pair of components separated by a comma. For example, if you think the x component is 3 and the y component is 4, then you should enter 3,4
Physics
1 answer:
8090 [49]4 years ago
3 0
Α=2.4 \frac{m}{s}

β=1.2 \frac{m}{s^2}

x(t)=at

y(t)=3-βt^2

Vx(t)=α

Vy(t)=-2βt

vectorV=[α;-2βt]

ax(t)=0

ay(t)=-2βt

vector a [0;-2βt]


You might be interested in
Why is it important to understand your strength and weakness<br><br>​
S_A_V [24]

Answer: be a better person

Explanation:

6 0
3 years ago
Read 2 more answers
The Mars Curiosity rover was required to land on the surface of Mars with a velocity of 1 m/s. Given the mass of the landing veh
Aliun [14]

Answer:

The value is      A   = 39315 \  m^2

Explanation:

From the question we are told that

    The velocity which the rover is suppose to land with is  v  =  1 \ m/s

    The  mass of the rover and the parachute is  m  =  2270 \ kg

     The  drag coefficient is  C__{D}}  =  0.5

      The atmospheric density of Earth  is  \rho =  1.2 \  kg/m^3

     The acceleration due to gravity in Mars is  g_m  =  3.689 \  m/s^2

     

Generally the Mars  atmosphere density is mathematically represented as

          \rho_m  =  0.71 *  \rho

=>        \rho_m  =  0.71 *  1.2

=>        \rho_m  = 0.852 \  kg/m^3

Generally the drag force on the rover and the parachute  is mathematically represented as

          F__{D}} =  m  *  g_{m}

=>       F__{D}} =  2270   *  3.689  

=>       F__{D}} =  8374 \ N  

Gnerally this drag force is mathematically represented as

         F__{D}} =   C__{D}} *  A *  \frac{\rho_m * v^2 }{2}

Here A is the frontal area

So  

         A   =  \frac{2 *  F__D }{ C__D}  *  \rho_m  * v^2   }

=>       A   =  \frac{2 * 8374 }{ 0.5 *  0.852    *  1 ^2   }

=>       A   = 39315 \  m^2

8 0
3 years ago
Fifteen grams of substance X at 95 degrees Celsius is mixed with 45 grams of substance Z at 85 degrees Celsius in a container wh
Viefleur [7K]
According to the Law of Conservation of Energy, energy is neither created nor destroyed. They are just transferred from one system to another. To obey this law, the energy of the substances inside the container must be equal to the substance added to it. The energy is in the form of heat. There can be two types of heat energy: latent heat and sensible heat. Sensible heat is energy added or removed when a substance changes in temperature. Latent heat is the energy added or removed at a constant temperature during a phase change. Since there is no mention of phase change, we assume the heat involved here is sensible heat. The equation for sensible heat is:

H = mCpΔT
where
m is the mass of the substance
Cp is the specific heat of a certain type of material or substance
ΔT is the change in temperature.

So the law of conservation of heat tells that:

Sensible heat of Z + Sensible heat of container = Sensible heat of X

Since we have no idea what these substances are, there is no way of knowing the Cp. We can't proceed with the calculations. So, we can only assume that in the duration of 15 minutes, the whole system achieves equilibrium. Therefore, the equilibrium temperature of the system is equal to 32°C. The answer is C.
5 0
3 years ago
The change in pitch of a train's horn as it passes while you are standing still can be explained by
alexgriva [62]

The change in pitch of a train's horn as it passes while you are
standing still can be described by the Doppler effect, but that
doesn't explain it.

8 0
3 years ago
A 45.0-kg girl is standing on a 168-kg plank. The plank, originally at rest, is free to slide on a frozen lake, which is a flat,
muminat

Answer:

The speed of the plank relative to the ice is:

v_{p}=-0.33\: m/s

Explanation:

Here we can use momentum conservation. Do not forget it is relative to the ice.

m_{g}v_{g}+m_{p}v_{p}=0 (1)

Where:

  • m(g) is the mass of the girl
  • m(p) is the mass of the plank
  • v(g) is the speed of the girl
  • v(p) is the speed of the plank

Now, as we have relative velocities, we have:

v_{g/b}=v_{g}-v_{p}=1.55 \: m/s (2)

v(g/b) is the speed of the girl relative to the plank

Solving the system of equations (1) and (2)

45v_{g}+168v_{p}=0

v_{g}-v_{p}=1.55

v_{p}=-0.33\: m/s

I hope it helps you!      

8 0
3 years ago
Other questions:
  • In a pickup game of dorm shuffleboard, students crazed by final exams use a broom to propel a calculus book along the dorm hallw
    14·1 answer
  • if one paperclip has the mass of 1 gram and 1000 paperclips has a mass of 1 kilogram how many kilograms are 8000 paperclips ?
    9·1 answer
  • Select the statement that best describes gravity.
    8·2 answers
  • What is an effector strain of bacteria
    13·1 answer
  • The outer planets _____.all have rings
    9·2 answers
  • Which is the most closely related to the color of an acid-base indicator when dipped into solution?
    6·2 answers
  • Which of the following describes work?
    5·2 answers
  • Which circuit hook-up design will have the brightest light bulb?A - 1 battery 1 bulb, B - 2 batteries 1 bulb, C - 3 batteries on
    11·1 answer
  • Explain how a bathroom scale is like a biofeedback machine.
    10·1 answer
  • What type of energy does the horse have because of its motion?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!