1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
2 years ago
11

What is the net power needed to change the speed of a 1600-kg sport utility vehicle from 15.0 m/s to 40.0 m/s in 4.00 seconds

Physics
1 answer:
Sergio039 [100]2 years ago
3 0

Answer:

The net power needed to change the speed of the vehicle is 275,000 W

Explanation:

Given;

mass of the sport vehicle, m = 1600 kg

initial velocity of the vehicle, u = 15 m/s

final velocity of the vehicle, v = 40 m/s

time of motion, t = 4 s

The force needed to change the speed of the sport vehicle;

F = \frac{m(v-u)}{t} \\\\F = \frac{1600(40-15)}{4} \\\\F = 10,000 \ N

The net power needed to change the speed of the vehicle is calculated as;

P_{net} = \frac{1}{2} F[u + v]\\\\P_{net} = \frac{1}{2} \times 10,000[15 + 40]\\\\P_{net} = 275,000 \ W

You might be interested in
A driver brings a car to a full stop in 2.0 s. If the car was
Dvinal [7]
Working displayed in the picture below, the answer is -11 m s^-2

7 0
3 years ago
I need to find 1).a,b,c
Aleksandr [31]
Let's cut through the weeds and the trash
and get down to the real situation:

                  A stone is tossed straight up at  5.89 m/s .
                  Ignore air resistance.


Gravity slows down the speed of any rising object by  9.8 m/s every second.
So the stone (aka Billy-Bob-Joe) continues to rise for

                     (5.89 m/s / 9.8 m/s²)  =  0.6 seconds.

At that timer, he has run out of upward gas.  He is at the top
of his rise, he stops rising, and begins to fall.

His average speed on the way up is  (1/2) (5.89 + 0) = 2.945 m/s .

Moving for 0.6 seconds at an average speed of  2.945 m/s,
he topped out at

                    (2.945 m/s) (0.6 s) =  1.767 meters above the trampoline.

With no other forces other than gravity acting on him, it takes him
the same time to come down from the peak as it took to rise to it.

   (0.6 sec up) + (0.6 sec down)  =  1.2 seconds until he hits rubber again.



 
5 0
3 years ago
30
pickupchik [31]

Answer:

22m/s

Explanation:

lowest part on the graph (closest to x-axis)

4 0
2 years ago
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
3 years ago
Unlike other states of matter, what expand to fill their containers
padilas [110]

Answer:

gas

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • A state highway was constructed over wetlands. The state obtained a permit to fill the existing wetlands in accordance with the
    13·1 answer
  • Two​ pulleys, one with radius 2 inches and one with radius 9 inches​, are connected by a belt. If the 2-inch pulley is caused to
    5·1 answer
  • A water wave traveling in a straight line on a lake is described by the equation
    12·1 answer
  • An elevator weighs 1500 Newtons. Calculate how much potential energy it has when it is lived 500 meters in the air.
    9·1 answer
  • A wire must be replaced in a circuit by a new wire of the same material but nine times longer. If the new wire's resistance is t
    8·1 answer
  • Okay I better get a good answer for this guy I'm puttin' all my money on it.
    9·2 answers
  • What are becquerel rays????
    6·2 answers
  • Explain why air is not used as a<br>brake fluid ​
    10·1 answer
  • What is the difference between thermal energy and heat?
    12·1 answer
  • PLEASE HELP MEE I REALLY NEED IT
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!