9514 1404 393
Answer:
k = -1
Step-by-step explanation:
Put the given value of x in the equation, and solve the resulting equation for k.
2(5 -3) +k(1 +2·5) = k - 5 - 1
2(2) +k(11) = k -6 . . . . simplify a bit
10k = -10 . . . . . . . . . . add -4-k to both sides
k = -1 . . . . . . . . . . . . . divide by 10
The value of k is -1.
_____
<em>Check</em>
Use k = -1 in the original equation and solve for x.
2(x -3) -(1 +2x) = -1 -x -1
2x -6 -1 -2x = -x -2 . . . . eliminate parentheses
x = 7 -2 = 5 . . . . . . add x+7; answer checks OK
B is the answer ma brutha
Answer
a. 28˚
b. 76˚
c. 104˚
d. 56˚
Step-by-step explanation
Given,
∠BCE=28° ∠ACD=31° & line AB=AC .
According To the Question,
- a. the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment.(Alternate Segment Theorem) Thus, ∠BAC=28°
- b. We Know The Sum Of All Angles in a triangle is 180˚, 180°-∠CAB(28°)=152° and ΔABC is an isosceles triangle, So 152°/2=76˚
thus , ∠ABC=76° .
- c. We know the Sum of all angles in a triangle is 180° and opposite angles in a cyclic quadrilateral(ABCD) add up to 180˚,
Thus, ∠ACD + ∠ACB = 31° + 76° ⇔ 107°
Now, ∠DCB + ∠DAB = 180°(Cyclic Quadrilateral opposite angle)
∠DAB = 180° - 107° ⇔ 73°
& We Know, ∠DAC+∠CAB=∠DAB ⇔ ∠DAC = 73° - 28° ⇔ 45°
Now, In Triangle ADC Sum of angles in a triangle is 180°
∠ADC = 180° - (31° + 45°) ⇔ 104˚
- d. ∠COB = 28°×2 ⇔ 56˚ , because With the Same Arc(CB) The Angle at circumference are half of the angle at the centre
For Diagram, Please Find in Attachment
0.25 or 1/4 as a fraction