Answer:
(a) r = 6.26 * 10⁻⁷cm
(b) r₂ = 6.05 * 10⁻⁷cm
Explanation:
Using the sedimentation coefficient formula;
s = M(1-Vρ) / Nf ; where s is sedimentation coefficient, M is molecular weight, V is specific volume of protein, p is density of the solvent, N is Avogadro number, f if frictional force = 6πnr, n is viscosity of the medium, r is radius of particle
s = M ( 1 - Vρ) / N*6πnr
making r sbjct of formula, r = M (1 - Vρ) / N*6πnrs
Note: S = 10⁻¹³ sec, 1 KDalton = 1 *10³ g/mol, I cP = 0.01 g/cm/s
r = {(3.1 * 10⁵ g/mol)(1 - (0.732 cm³/g)(1 g/cm³)} / { (6.02 * 10²³)(6π)(0.01 g/cm/s)(11.7 * 10⁻¹³ sec)
r = 6.26 * 10⁻⁷cm
b. Using the formula r₂/r₁ = s₁/s₂
s₂ = 0.035 + 1s₁ = 1.035s₁
making r₂ subject of formula; r₂ = (s₁ * r₁) / s₂ = (s₁ * r₁) / 1.035s₁
r₂ = 6.3 * 10⁻⁷cm / 1.035
r₂ = 6.05 * 10⁻⁷cm
Answer:
volume of the gas is 5.0L
Explanation:
Using Boyle's law that state the pressure of a gas is inversely proportional to volume of it occupies when temperature is constant, it is possible to write:
P₁V₁ = P₂V₂
<em>Where P is pressure, V is volume and 1 and 2 are initial and final states.</em>
<em />
If initial volume is 2.5L, initial pressure is 2.0atm and 1.0atm is final pressure, final volume is:
2.0atm*2.5L = 1atm V₂
5.0L = V₂
Thus, <em>volume of the gas is 5.0L</em>.
Answer:
726 torr
Explanation:
Generally, atmospheric pressure can be measured using a manometer which is in form of a U-shaped tube. In addition, 1 mm Hg is equivalent to 1 torr. Therefore, 752 torr is equivalent to 752 mm Hg. Therefore, the total pressure will be equivalent to the atmospheric pressure (mm Hg) + the mercury height.
In this case, the mercury height = -26 mm
Thus:
The helium pressure = 752 - 26 = 726 mm Hg
This is also equivalent to 726 torr
Answer:
1) magnesium chloride
2) b) The copper is getting oxidized from Cu+ to Cu2+ and turns blue.
Explanation:
The work published by David N. Frick, Sukalyani Banik, and Ryan S. Rypma in J Mol Biol. 2007 Jan 26; 365(4): 1017–1032 clearly shows that divalent metal ions of group 2 such as Mg^2+ play an important role in ATP hydrolysis. Addition of EDTA decreased the rate of hydrolysis of ATP (due to sequestration of the divalent ion of group 2) indicating an active participation of divalent ions in the process.
2) The copper I ion is colourless because it is a d^10 specie. However, when it is oxidized to Cu^2+, a blue colour appears in the solution.
The answer is C. A, B, and C would depend on what type of electron it is.