Answer:
We need 17.2 L of Ca(OH)2
Explanation:
Step 1: Data given
Concentration of Ca(OH)2 = 1.45 M
Moles of H2SO4 = 25.0 moles
Step 2: The balanced equation
Ca(OH)2 + H2SO4 ⟶2H2O + CaSO4
Step 3: Calculate moles Ca(OH)2
For 1 mol Ca(OH)2 we need 1 mol H2SO4 to produce 2 moles H2O and 1 mol CaSO4
For 25.0 moles H2SO4 we'll need 25.0 moles Ca(OH)2 to produce 50 moles H2O and 25.0 moles CaSO4
Step 4: Calculate volume of Ca(OH)2
Volume Ca(OH)2 = moles Ca(OH)2 / concentration Ca(OH)2
Volume Ca(OH)2 = 25.0 moles / 1.45 M
Volume Ca(OH)2 = 17.2 L
We need 17.2 L of Ca(OH)2
Answer:
Explanation:
1)<u> Convert the distance, 13.1 km to miles</u>
1 = 1 mi / 1.61 km
- 13.1 km [ 1 mi / 1.61 km ] = 8.1336 mi
2)<u> Use 6.2 mi/h as a converstion factor between distance and time</u>
- 8.1366 mi × 1 / [6.2 mi/h] = 1.3124 h
3) <u>Convert 1.3124 h to minutes</u>
- 1.3124 h × [ 60 min/h] = 78.7 min
Rounding to the nearest minutes (two significant figures):
Answer:
A. Diethyl ether will react with the alkenes that were formed in the experiment.
Explanation:
Ethers such as diethyl ether dissolve a wide range of polar and nonpolar organic compounds. Nonpolar compounds are generally more soluble in diethyl ether than alcohols because ethers do not have a hydrogen bonding network that must be broken up to dissolve the solute.
Answer:
I hope this is it. I'm not really sure.