Given the solubility of strontium arsenate is 0.0480 g/l . we have to convert it into mol/L by dividing it over molar mass (540.7 g/mol)
Molar solubility = 0.0480 / 540.7 = 8.9 x 10⁻⁵ mol/L
Dissociation equation:
Sr₃(AsO₄)₂(s) → 3 Sr²⁺(aq) + 2 AsO₄³⁻(aq)
3 s 2 s
Ksp = [Sr²⁺]³ [AsO₄³⁻]²
= (3s)³ (2s)²
= 108 s⁵
Ksp = 108 (8.9 x 10⁻⁵) = 5.95 x 10⁻¹⁹
Within the core of the Sun, temperatures and pressures are high enough to fuse hydrogen atoms into helium, which is the Sun's main form of energy production. Assuming there was a slight mistake in where you have copied the results here the correct answer is the third option.
Hope this helps!
The formula Ca(ClO3)2 breaks down to: 1 calcium atom, 2 chlorine atoms, and 6 oxygen atoms. Therefore:
One molecule of calcium chlorate contains 9 atoms [correct]
Calcium chlorate is not an element, nor does the molecule contain only 3 atoms [incorrect]
It does not take 9 different elements - just the three elements we listed [incorrect]
Calcium chloride only contains one Ca group [incorrect]
Answer:
The correct answer is: pH= 4.70
Explanation:
We use the <em>Henderson-Hasselbach equation</em> in order to calculate the pH of a buffer solution:
![pH= pKa + log \frac{ [conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%3D%20pKa%20%2B%20log%20%20%20%5Cfrac%7B%20%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
Given:
pKa= 4.90
[conjugate base]= 4.75 mol
[acid]= 7.50 mol
We calculate pH as follows:
pH = 4.90 + log (4.75 mol/7.50 mol) = 4.90 + (-0.20) = 4.70
Answer:Noble gases:
are highly reactive.
react only with other gases.
do not appear in the periodic table.
are not very reactive with other elements.
Explanation:Noble gases:
are highly reactive.
react only with other gases.
do not appear in the periodic table.
are not very reactive with other elements.