Answer:
The concentration of the CaBr2 solution is 96 µmol/L
Explanation:
<u>Step 1:</u> Data given
Moles of Calciumbromide (CaBr2) = 4.81 µmol
Volume of the flask = 50.0 mL = 0.05 L
<u>Step 2:</u> Calculate the concentration of Calciumbromide
Concentration CaBr2 = moles CaBr2 / volume
Concentration CaBr2 = 4.81 µmol / 0.05 L
Concentration CaBr2 = 96.2 µmol /L = 96.2 µM
The concentration of the CaBr2 solution is 96 µmol/L
1kg of water has greater internal energy compared to 1g of water because 1kg of water has more mass.
Answer:
The correct answer is "False".
Explanation:
It is false that as carbon dioxide enters systemic blood, it causes more oxygen to dissociate from hemoglobin. Once an atom of oxygen binds to hemoglobin, hemoglobin change its shape and makes easier than a second and a third atom of oxygen binds towards it. This change in conformation makes no possible that carbon dioxide can cause that oxygen dissociates from hemoglobin.
Answer:
option C is correct = 1.14 × 10²² molecules of CO₂
Explanation:
Given data:
Number of moles of CO₂ = 0.0189 mol
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
For given question:
1 mole of CO₂ = 6.022 × 10²³ molecules of CO₂
0.0189 mol of CO₂ × 6.022 × 10²³ molecules of CO₂ / 1mol
1.14 × 10²² molecules of CO₂
Thus, option C is correct.
We can use the combined gas law equation to solve for the initial volume

parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
substituting the values in the equation

V = 8.50 L
the initial volume is 8.50 L