The answer is Cartography.
Answer:
d) none of the above
Explanation:
The law that describes the relationship between pressure and volume of an ideal gas (under constant temperature and amount of substance) is Boyle's law.
It states that pressure is inversely proportional to the volume. This would mean that a graph of P vs 1/V would be a line.
See the attached picture for a graph of P vs V.
Answer: Oxidation half:
Reduction half: 
Explanation:
Oxidation-reduction reaction or redox reaction is defined as the reaction in which oxidation and reduction reactions occur simultaneously.
Oxidation reaction is defined as the reaction in which a substance looses its electrons. The oxidation state of the substance increases.
Oxidation half:
Reduction reaction is defined as the reaction in which a substance gains electrons. The oxidation state of the substance gets reduced.
Reduction half:
<u><em>Answer:</em></u>
- <em>Respect </em>
- <em>Confidentiality </em>
<u><em /></u>
<u><em>Explanation:</em></u>
<em>*Hope this helps*</em>
<u><em /></u>
Answer:
11.58 L of N₂
Explanation:
We'll begin by calculating the number of mole in 37.2 g of magnesium. This can be obtained as follow:
Mass of Mg = 37.2 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 37.2 / 24
Mole of Mg = 1.55 moles
Next, we shall write the balanced equation for the reaction. This is illustrated below:
3Mg + N₂ —> Mg₃N₂
From the balanced equation above,
3 moles of Mg reacted with 1 mole of N₂.
Therefore, 1.55 moles of Mg will react with = (1.55 × 1)/3 = 0.517 mole of N₂
Thus, 0.517 mole of N₂ is need for the reaction.
Finally, we shall determine the volume of N₂ needed for the reaction as follow:
Recall:
1 mole of a gas occupies 22.4 L at STP.
1 mole of N₂ occupied 22.4 L at STP.
Therefore, 0.517 mole of N₂ will occupy = 0.517 × 22.4 = 11.58 L at STP
Thus, 11.58 L of N₂ is needed for the reaction.