The mass of Ba(IO3)2 that can be dissolved in 500 ml of water at 25 degrees celcius is 2.82 g
<h3>What mass of Ba(IO3)2 can be dissolved in 500 ml of water at 25 degrees celcius?</h3>
The Ksp of Ba(IO3)2 = 1.57 × 10^-9
Molar mass of Ba(IO3)2 = 487 g/mol?
Dissociation of Ba(IO3)2 produces 3 moles of ions as follows:
moles of Ba(IO3)2 = 1.16 × 10^-3 × 0.5 = 0.58 × 10^-3 moles
mass of Ba(IO3)2 = 0.58 × 10^-3 moles × 487 = 2.82 g
Therefore, mass Ba(IO3)2 that can be dissolved in 500 ml of water at 25 degrees celcius is 2.82 g.
Learn more about mass and moles at: brainly.com/question/15374113
#SPJ12
A carbon which is attached to four different atoms or group of atoms with different environment is called as
Chiral Carbon or
Asymmetric Carbon.
Non-<span>
superimposable:
</span> The mirror image (molecule) of chiral carbon cotaining compounds are Non.Superimposable on each other. They are called enantiomers of each other.
Polarized Light and Chiral Carbon: When a polarized light is allowed to fall on either enantiomer of chiral compound, it is rotated other clockwise or anti-clockwise.
Examples: Below are three axamples of compounds containing chiral carbon.
has 37 electrons in the orbit about its nucleus.
<h3>How to write an atomic symbol with atomic mass and atomic number?</h3>
Atomic mass is the total number of neutrons and protons present in the nucleus of an element.
The atomic number is the total number of protons present in the nucleus of an element.
For writing an atomic symbol, atomic mass is written on the top left of the atomic symbol, and the atomic number is written on the downside of the left of the symbol.
An electrically neutral atom is an atom that has an equal number of electrons as well as protons.
Thus from the above conclusion we can say that has 37 electrons.
Learn more about Atomic mass and atomic number here:
brainly.com/question/3187640
#SPJ4
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation: