Hair is dead skin cells that pile on top of each other to "grow".
In a high-mass star, hydrogen fusion occurs via the CNO (Carbon-Nitrogen-Oxygen) cycle.
According to the life cycle of a star, there are three main phases in the life of a star: The initial phase (a quick phase), short phase or supergiant phase and death phase or supernova explosion.
the CNO cycle means Carbon-Nitrogen-Oxygen cycle and this process tale place during main sequence phase.
In this phase, hydrogen fuses into helium as a result of six different reaction taking place inside a star.
The first step of the sequence begins when the nucleus of carbon 12 isotope emits gamma rays after capturing a proton and produces nitrogen-13.
This whole cycle is known as stellar nucleosynthesis.
If you need to learn more about Carbon-Nitrogen Cycle click here:
brainly.com/question/13022835
#SPJ4
Answer:
the final volume of the gas is = 1311.5 mL
Explanation:
Given that:
a sample gas has an initial volume of 61.5 mL
The workdone = 130.1 J
Pressure = 783 torr
The objective is to determine the final volume of the gas.
Since the process does 130.1 J of work on its surroundings at a constant pressure of 783 Torr. Then, the pressure is external.
Converting the external pressure to atm ; we have
External Pressure :
The workdone W = V
The change in volume ΔV=
ΔV =
ΔV =
ΔV = 1.25 L
ΔV = 1250 mL
Recall that the initial volume = 61.5 mL
The change in volume V is
multiply through by (-), we have:
= 1250 mL + 61.5 mL
= 1311.5 mL
∴ the final volume of the gas is = 1311.5 mL
I think the answer is D no change. Though you add more CO2, but the pressure is not mentioned. If the pressure is constant and the reaction is already balanced, the H2O is also saturation and can not absorb more CO2.
Answer:
Mass, temperature, and phase.
I think temperature because the higher the temperature of a given quantity of a substance, more is its thermal energy. Similarly, for the same temperature, higher mass of a substance will contain more thermal energy.