24. <span>Valence electrons are most loosely held by the atom and are involved in chemical reactions. Chemical reactions occur when valence electrons are shared between atoms. The number of valence electrons determines how these reactions take place and what kind of bonds they form.
25 </span><span>Sodium has one valence electron and chlorine has seven valence electrons. The Ione valence electron from sodium is lost and is transferred to the chlorine atom. The result is a sodium ion with a charge of 1+ and a chloride ion with a charge of 1-. The oppositely charged ions attract each other and the charges balance to make a compound that is electrically neutral.
26. </span><span>Ionic compounds have high melting points and high boiling points compared to molecular compounds. Ionic compounds that are dissolved in water or melted will conduct electricity. Molecular compounds do not conduct electricity in either case.
27. </span><span>A covalent bond is formed when two atoms share valence electrons. Neither atom loses electrons or takes electrons from the other. No charged particles form. In an ionic bond, one or more electrons are transferred from one atom to another. Atoms that lose electrons become positively charged ions, and atoms that gain electrons become negatively charged ions. These oppositely charged particles then attract each other.
28. </span><span>A metal crystal consists of positively charged metal ions embedded in a "sea" of loosely held valence electrons that can move around easily. Heat travels through materials as the increased motion of the particles in the hotter parts of the material is passed along to the particles in the cooler parts. In a metal, since particles are easily set in motion, heat is easily transferred or conducted. The same is true for the conduction of electricity. Electricity can flow when charged particles, such as electrons, are free to move. Since the electrons in a metal crystal can move freely among the atoms, electricity is easily conducted.</span>
Signs that a chemical reaction is occurring are: 1. change in color 2. change in odor 3. change in pH, as in changes from acid to base or base to acid
Answer:
0.26×10²³ molecules
Explanation:
Given data:
Volume of gas = 1.264 L
Temperature = 168°C
Pressure = 946.6 torr
Number of molecules of gas = ?
Solution:
Temperature = 168°C (168+273= 441 K)
Pressure = 946.6 torr (946.6/760 = 1.25 atm)
Now we will determine the number of moles.
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1.25 atm ×1.264 L / 0.0821 atm.L/ mol.K ×441 K
n = 1.58 /36.21 /mol
n = 0.044 mol
Now we will calculate the number of molecules by using Avogadro number.
1 mol = 6.022×10²³ molecules
0.044 mol × 6.022×10²³ molecules/ 1mol
0.26×10²³ molecules
Answer:
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (the electromagnetic, weak, and strong interactions, and not including the gravitational force) in the universe, as well as classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists around the world, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks.