The balanced equation between NaOH and H₂SO₄ is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
number of moles of NaOH moles reacted = molarity of NaOH x volume
number of NaOH moles = 0.08964 mol/L x 27.86 x 10⁻³ L = 2.497 x 10⁻³ mol
according to molar ratio of 2:1
2 mol of NaOH reacts with 1 mol of H₂SO₄
therefore 2.497 x 10⁻³ mol of NaOH reacts with - 1/2 x 2.497 x 10⁻³ mol of H₂SO₄
number of moles of H₂SO₄ reacted - 1.249 x 10⁻³ mol
Number of H₂SO₄ moles in 34.53 mL - 1.249 x 10⁻³ mol
number of H₂SO₄ moles in 1000 mL - 1.249 x 10⁻³ mol / 34.53 x 10⁻³ L = 0.03617 mol
molarity of H₂SO₄ is 0.03617 M
Answer: A barrier should be created to overcome the atmosphere of the Venus, while launching spacecraft to Venus.
Explanation:
The atmosphere of Venus consists of 96.5% carbon dioxide, other composition includes nitrogen and other gases in trace amounts. The large amount of carbon dioxide in the atmosphere can extinguish the missile of the launcher of spacecraft thus it will become difficult in launch of spacecraft to the Venus.
To answer this item, we assume that oxygen behaves ideally such that it is able to fulfill the following equation,
PV = nRT
If we are to retain constant the variable n and V.
The percent yield can therefore be solved through the following calculation,
n = (10.5 L)/(22.4 L) x 100%
Simplifying,
n = 46.875%
Answer: 48.87%