Answer:
The object takes approximately 1.180 seconds to complete one horizontal circle.
Explanation:
From statement we know that the object is experimenting an Uniform Circular Motion, in which acceleration (
), measured in meters per square second, is entirely centripetal and is expressed as:
(1)
Where:
- Period of rotation, measured in seconds.
- Radius of rotation, measured in meters.
If we know that
and
, then the time taken by the object to complete one revolution is:




The object takes approximately 1.180 seconds to complete one horizontal circle.
Answer:
insect B by 12m
Explanation:
30min = 1800s (times by 60)
5m/min x 30min = 150m
9cm/s x 1800s = 16,200cm = 162m
162m - 150m = 12m
The wheel and axle increases your force. You exert your input force over a long distance and the output force is increased over a shorter distance. (Because the wheel is larger than the axle, the axle rotates and exerts a large output force.) A simple machine with a grooved wheel with a rope or cable wrapped around it.
The density would decrease because the mass of an object deals with the amount of atoms in the object and since none of the object was reduced "a" wouldn't be the answer. Depending on the amount and period of time that the heat is applied the liquid could change into a gas so "d" wouldn't be correct. Density is the mass÷ volume, and when you add heat to an object it could take up different amounts of space because of its particles gaining energy and spreading apart. So the density would decrease because of the volume increasing. So I believe that "c" is the answer.