Answer:
Heat causes the molecules to move faster, (heat energy is converted to kinetic energy ) which means that the volume of a gas increases more than the volume of a solid or liquid.
Explanation:
<h2>
Answer:</h2>
1.77V
<h2>
Explanation:</h2>
The electromotive force voltage (E) in a cell, is related to the lost voltage (
) and the terminal voltage (
) as follows;
E =
- 
Where;
The lost voltage (
) is the product of the internal resistance (r) of the cell and current (I) in the cell. i.e
= I x r
<em>Substitute </em>
<em> = I x r into equation (i) as follows;</em>
E =
- (I x r) ----------------------(ii)
<em>According to the question;</em>
E = 1.54V
I = 2.15A
r = 0.105Ω
<em>Substitute these values into equation(ii) as follows;</em>
1.54 =
- (2.15 x 0.105)
1.54 =
- (0.22575)
1.54 =
- 0.22575
<em>Solve for </em>
<em>;</em>
= 1.54 + 0.22575
= 1.54 + 0.22575
= 1.77V
Therefore, the terminal voltage of the cell is 1.77V
Answer: Fourth option. It increased by a factor of 3.
Solution:
m1=1.0 kg
Cylinder's gravitational potential energy: Ep=m*g*h
Ep1=(1.0 kg)*g*h
Ep1=g*h
m2=3.0 kg
Ep2=(3.0 kg)*g*h
Ep2=3*g*h
Replacing g*h by Ep1 in the equation above:
Ep2=3*Ep1
Then, the cylinder's gravitational potential energy increased by a factor of 3.
Answer:
25cm^2
Explanation:
area of square = side × side
length of side given = 5
area of this square = 5× 5
= 25cm^2
hope it helps
Answer:
We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved
Explanation: