Answer:

Explanation:
We need to find the energy for an electron to jump from n = 1 to n = 4.
The energy in transition from 1 state to another is given by :

The difference in energy for n = 1 to n = 4 is:

So, the required energy is equal to
.
Answer:
#See solution for details.
Explanation:
1.
Tools:
.
:Calculate the speed of the wave using the time,
it takes to travel along the rope. Rope's length,
is measured using the meter stick.
-Attach one end of rope to a wall or post, shake from the unfixed end to generate a pulse. Measure the the time it takes for the pulse to reach the wall once it starts traveling using the stopwatch.
-Speed of the pulse can then be obtained as:

: Apply force of known value to the rope then use the following relation equation to find the speed of a pulse that travels on the rope.

-Use the measuring stick and measuring scale to determine
values of the rope then obtain
.
-Use the force measuring constant to determine
. These values can the be substituted in
to obtain 
Known variables
d=4.6m
initial velocity=0m/s
downward acceleration=-9.8m/s2
d=1/2gt2
4.6=1/2 -9.8 t2
t=0.93s
Answer:
y = 128.0 km
Explanation:
The minimum separation of two objects is determined by Rayleygh's diffraction criterion, which establishes that two bodies are solved if the first minino of diffraction of one coincides with the central maximum of the second, with this criterion the diffraction equation remains
the diffraction equation for the first minimum is
a sin θ = λ
In the case of circular openings, the equation must be solved in polar coordinates, leaving the expression, we use the approximation that the sine of tea is very small.
θ = 1.22 λ / d
d = 15 cm
to find the distance we can use trigonometry
tan θ = y / L
tan θ = sin θ / cos θ = θ
substituting
y / L = λ / d
y = L λ /d
let's calculate
y = 384 10⁸ 500 10⁻⁹ / 0.15
y = 1.28 10⁵ m
Let's reduce to km
y = 1.28 10⁵ m (1km / 10³ m)
y = 128.0 km
the correct answer is 120 km away
Answer:
Water.
Explanation:
This means:
1) For the temperature of water to raise at any point to the next degree by 1°C, will require a specific heat capacity of 4.184 J/Kg°C
2) For the temperature of wood to raise at any point to the next degree by 1°C, will require a specific heat capacity of 1.760 J/Kg°C
Note that: specific heat is directly proportional to energy, therefore the higher the heat capacity, the higher the energy.
4.184 J/Kg°C is higher than 1.760 J/Kg°C, hence WATER needs more energy.