1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleonysh [2.5K]
3 years ago
5

Which of these is NOT a possible type of energy transformation?

Physics
1 answer:
Orlov [11]3 years ago
6 0

to be franc i really think the answer is B

You might be interested in
ASTRONOMY !! PLS HELP!!
aleksandr82 [10.1K]

-- pick a planet from the table

-- take it's mass and radius from the table, and plug them into the big ugly formula above the table

-- do the arithmetic with your pencil or your calculator. The answer is the acceleration of gravity on the planet you picked. Write it down so you don't lose it.

-- do the same for the other 3 planets in the table

6 0
3 years ago
Q.3. The equivalent resistance across AB is:<br> (a)1<br> (c)2<br> (b)3<br> (d)4
sp2606 [1]

Answer:

1 ohm

Explanation:

First of all, the equivalent resistance for two resistors (r₁ and r₂) in parallel is given by:

1 / Eq = (1 / r₁) + (1 / r₂)

The equivalent resistance for resistance for two resistors (r₁ and r₂) in series is given by:

Eq = r₁ + r₂

Hence as we can see from the circuit diagram, 2Ω // 2Ω, and 2Ω // 2Ω, hence:

1/E₁ = 1/2 + 1/2

1/E₁ = 1

E₁ = 1Ω

1/E₂ = 1/2 + 1/2

1/E₂ = 1

E₂ = 1Ω

This then leads to E₁ being in series with E₂, hence the equivalent resistance (E₃) of E₁ and E₂ is:

E₃ = E₁ + E₂ = 1 + 1 = 2Ω

The equivalent resistance (Eq) across AB is the parallel combination of E₃ and the 2Ω resistor, therefore:

1/Eq = 1/E₃ + 1/2

1/Eq = 1/2 + 1/2

1/Eq = 1

Eq = 1Ω

7 0
3 years ago
Write an email to a classmate explaining why the velocity of the current in a river has no FN C02-F20-OP11USB effect on the time
anzhelika [568]

The velocity of the current in a river has no effect on the the time it takes to paddle a canoe across the river, given that the boat is pointed perpendicular to the bank of the river, because

The velocity of the river does not change the velocity and therefore the distance traveled in the direction of the boat which is directed perpendicular to it

Reason:

Let \overset \rightarrow {v_y} represent the velocity of the boat across the river in the direction, \overset \rightarrow {d_y}, and let, \overset \rightarrow {v_x}, represent the velocity of the river, we have;

The velocity of the boat perpendicular to the direction of the river = \overset \rightarrow {v_y}

Therefore, the distance covered per unit time in the perpendicular direction

to the flow of the river is \overset \rightarrow {v_y}, such that the time it takes to cross the river in

the perpendicular direction is the same, for every value of the velocity of

the river.

This is so because the velocity in the perpendicular direction to the flow of

the river, which is the velocity of the boat is unchanged by the velocity of

the river, because there is no perpendicular component of velocity in the

velocity of the river.

\overset \rightarrow {v_y} = 3 m/s

\overset \rightarrow {v_x} = 4 m/s

The width of the river, w_y = 6 meters, we have;

  • The resultant velocity = \sqrt{(3 \ m/s)^2 + (4 \ m/s)^2} =5 \ m/s

The direction, θ, is given as follows;

\theta = \arctan \left(\dfrac{4}{3} \right) \approx 53.13^{\circ}

The length of the path of the boat, <em>l</em>, is given as follows;

l = \dfrac{6}{cos \left(\arctan \left(\dfrac{4}{3} \right)\right)} = 10

The length of the path the boat takes = 10 m

The time it takes to cross the river, t = \dfrac{l}{v}, therefore;

  • t = \dfrac{10}{5} = 2
  • The time it takes to cross the river, t = 2 seconds

Considering only the y-components, we have;

t = \dfrac{w_y}{v_y}

Therefore;

t = \dfrac{6 \ m}{3 \ m/s} = 2 \, s

Which expresses that the time taken is the same and given that the

vectors of the velocities of the river and the boat are perpendicular, the

distance covered in the direction of the boat is unaffected by the velocity

of the river.

Learn more vectors here:

brainly.com/question/15907242

5 0
3 years ago
What kind of stars make up the galactic nucleus?
Hatshy [7]
I think the correct answer would be old and metal poor stars are found in the galactic nucleus. This nucleus us a region in the center of a galaxy which contains a higher luminosity than other parts. It produces very high amounts of energy. Hope this helps.
4 0
3 years ago
Read 2 more answers
A 56 kg sprinter, starting from rest, runs 49 m in 7.0 s at constant acceleration.what is the sprinter's power output at 2.0 s,
alexgriva [62]
The sprinter is in uniform accelerated motion, and its initial velocity is zero, so the relationship betwen space (S) and time (t) is
S= \frac{1}{2} a t^2
where a is the acceleration. Using the data of the problem, we can find a:
a= \frac{2S}{t^2} = \frac{2 \cdot 49 m}{(7.0 s)^2} =2.0 m/s^2
So now we can solve the 3 parts of the problem.

a) power output at t=2.0 s
The velocity at t=2.0 s is
v(t)=at=(2.0 m/s^2)(2.0 s)=4.0 m/s

the kinetic energy of the sprinter is
K= \frac{1}{2} mv^2= \frac{1}{2}(56 kg)(4.0 m/s)^2=448 J

and so the power output is
P= \frac{E}{t} = \frac{448 J}{2.0 s} =224 W

b) power output at t=4.0s 
The velocity at t=4.0 s is
v(t)=at=(2.0 m/s^2)(4.0 s)=8.0 m/s

the kinetic energy of the sprinter is
K= \frac{1}{2} mv^2= \frac{1}{2}(56 kg)(8.0 m/s)^2=1792 J

and so the power output is
P= \frac{E}{t} = \frac{1792 J}{4.0 s} =448 W

c) Power output at t=6.0 s
The velocity at t=2.0 s is
v(t)=at=(2.0 m/s^2)(6.0 s)=12.0 m/s

the kinetic energy of the sprinter is
K= \frac{1}{2} mv^2= \frac{1}{2}(56 kg)(6.0 m/s)^2=4032 J

and so the power output is
P= \frac{E}{t} = \frac{4032 J}{6.0 s} =672 W
8 0
3 years ago
Other questions:
  • What is kirchoff s law???
    10·2 answers
  • A bird sitting high in a tree is an example of an object with what type of energy?
    5·2 answers
  • SOMEBODY PLEASE HELP!!! Indicate the reasons why the centripetal acceleration (and centripetal force) always point to the center
    15·1 answer
  • For a given wing–body combination, the aerodynamic center lies 0.03 chord length ahead of the center of gravity. The moment coef
    14·1 answer
  • A rigid container holds 0.30g of hydrogen gas.
    12·1 answer
  • A 20-kg object sitting at rest is struck elastically in a head-on collision with a 10-kg object initially moving at 3.0 m/s. Fin
    13·1 answer
  • A heated piece of metal cools according to the function c(x) = (.5)^(x _ 11), where x is measured in hours. A device is added th
    8·2 answers
  • What is the
    9·1 answer
  • What is the force of a ball if it has a mass of 10 kg and accelerates at an acceleration of 20 m/s^2? *
    15·1 answer
  • A 2kg book is held against a vertical wall. The coefficient of friction is 0.45. What is the minimum force that must be applied
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!