1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
4 years ago
6

. Air at 200 C blows over a 50 cm x 75 cm plain carbon steel (AISI 1010) hot plate with a constant surface temperature of 2500 C

. The convection heat transfer coefficient is 25 W/m2K. Assume that 300 W is lost from the surface by radiation. Calculate the inside plate temperature. Assume that the plate is 2 cm thick. State all assumptions
Engineering
1 answer:
MrRissso [65]4 years ago
3 0

Answer:

The inside temperature, T_{in} is approximately 248 °C.

Explanation:

The parameters given are;

Temperature of the air = 20°C

Carbon steel surface temperature 250°C

Area of surface = 50 cm × 75 cm = 0.5 × 0.75 = 0.375 m²

Convection heat transfer coefficient = 25 W/(m²·K)

Heat lost by radiation = 300 W

Assumption,

Air temperature = 20 °C

Hot plate temperature = 250 °C

Thermal conductivity K = 65.2 W/(m·K)

Steady state heat transfer process

One dimensional heat conduction

We have;

Newton's law of cooling;

q = h×A×(T_s - T_{\infty) + Heat loss by radiation

= 25×0.325×(250 - 20) + 300

= 2456.25 W

The rate of energy transfer per second is given by the following relation;

P = \dfrac{K \times A \times \Delta T}{L}

Thermal conductivity K = 65.2 W/(m·K)

Therefore;

2456.25  = \dfrac{65.2 \times 0.375 \times (250 - T_{in})}{0.02}

T_{in} = 250 - \dfrac{2456.25  \times 0.02}{65.2 \times 0.375} = 247.99 ^{\circ}C

The inside temperature, T_{in} = 247.99 °C  ≈ 248 °C.

You might be interested in
At a certain location, wind is blowing steadily at 10 m/s. Determine the mechanical energy of air per unit mass and the power ge
ale4655 [162]

Answer:

<em>a) 50 J/kg</em>

<em>b) 721 67 KW</em>

<em></em>

Explanation:

The velocity of the wind v = 10 m/s

diameter of the blades d = 70 m

efficiency of the turbine η = 30%

density of air ρ = 1.25 kg/m^3

The area of the blade A = \pi d^2/4

A = \frac{3.142 * 70^2}{4} = 3848.95 m^2

The mechanical energy air per unit mass is gives as

e = v^2/2 = \frac{10^2}{2} = <em>50 J/kg</em>

<em></em>

Theoretical Power of the turbine P = ρAve

where

ρ is the density of air

A is the area of the blade

v is the velocity of the wind

e is the energy per unit mass

substituting values, we have

P = 1.25 x 3848.95 x 10 x 50 = 2405593.75 W

Actual power = ηP

where η is the efficiency of the turbine

P is the theoretical power of the turbine

Actual power = 0.3 x 2405593.75 = 721678.1 W

==> <em>721 67 KW</em>

7 0
3 years ago
The emissivity of galvanized steel sheet, a common roofing material, is ε = 0.13 at temperatures around 300 K, while its absorpt
Step2247 [10]

Answer:

759.99W/m²

Explanation:

Question: If the temperature of the sheet is 77C,what is the incident solar radiation on aday with Tinf= Tsurr= 16°C?

Given

Energy Equation of the Gas

αs * Gs * A + h * A * (T inf - Tg) + εσA (Tsurr⁴- Tg⁴) = 0

Where σ= 5.67 *10^-8 W/m²K⁴ (Stefan-Boltzmann constant)

ε = 0.13 (Emisivity)

αs = 0.65 (Absorptivity for solar radiation)

h = 7W/m²K⁴

Tg = 77 + 273.15K = 350.15K

T inf = 16 + 273.15 = 288.15K

T surr= T inf = 288.15

Substitute the above values in the Gas Equation, we have

0.65 * Gs * A + 7 * A * (288.15 - 350.15) + 0.13 * 5.67 * 10^-8 * A * (288.15⁴ - 350.15⁴) = 0

0.65 * Gs * A = - 7 * A * (288.15 - 350.15) - 0.13 * 5.67 * 10^-8 * A * (288.15⁴ - 350.15⁴)

A cancels out, so we are left with

0.65 * Gs = - 7 * (288.15 - 350.15) - 0.13 * 5.67 * 10^-8 * (288.15⁴ - 350.15⁴)

0.65Gs = 434 - 0.7372 * 10^-8(−8,137,940,481.697)

0.65Gs = 434 + 0.7372 * 81.37940481697

0.65Gs = 493.992897231070284

Gs = 493.992897231070284/0.65

Gs = 759.9890726631850

Gs = 759.99W/m² ------- Approximated

3 0
3 years ago
Explain the differences between planned and predictive maintenance.
sveticcg [70]

Answer:

Planned maintenance refers to any scheduled activity carried out to check a machine is working ok and diagnose procedures to fix it if need it. On the other hand, predictive mainteance is all the techniques which help to define if a machine requires or not maintenance activities so far.

Explanation:

Planned maintenance is based on preventive routines to ensure a machine is working in acceptable conditions and at the same time prevent them to change to risky values performing acticities like parts replacement, cleaning,  etc. The key of this maintenance is schedule, that is to say, is a maintenance that has to be carried out constantly each certain time. Predictive maintenance is different because it is used to define if a machie needs any kind of inspection or if, on the contrary, the machine can continue operating without any intervention. The good point about predictive maintenance is the capability of telling when a maintenance is required and when is no necessarily required which is ideal to save costs.

7 0
3 years ago
Indicate on a tensile curve such quantities as yield stress, Young's modulus, UTS, toughness, point of necking, point of fractur
Illusion [34]

Explanation:

Step1

In the stress-strain curve of any material, the yield stress is the maximum stress at which material starts yielding.

Step2

Young’s modulus is the constant of proportionality of stress and strain according to hooks law. It is the slope of the slope of the stress-strain curve of the any material under proportional limit.

Step3

Ultimate tensile stress is the maximum stress that induced in the material under application of load.

Step4

Toughness is the strain energy per unit volume up to the fracture point of the stress-strain diagram of any material. This is the area under the curve of stress-strain.

Step5

Point of necking is the point where any material starts necking under application of load in necking region of the stress-strain curve.

Step6

Fracture point is the last point of the stress-strain curve where component fractures under application of load.

All the parameters are shown in below stress-strain curve:

8 0
3 years ago
Que es resistencia ?
IRINA_888 [86]
It is when you don’t give up and you stand for your rights
5 0
3 years ago
Other questions:
  • A rubber wheel on a steel rim spins freely on a horizontal axle that is suspended by a fixed pivot at point P. When the wheel sp
    11·1 answer
  • You are an engineer at company XYZ, and you are dealing with the need to determine the maximum load you can apply to a set of bo
    13·1 answer
  • A thick oak wall (rho = 545 kg/m3 , Cp = 2385 J/kgK, and k = 0.17 W/mK) initially at 25°C is suddenly exposed to combustion prod
    11·1 answer
  • प्रहार का समरूपी भिन्नार्थक शब्द अर्थ के साथ ​
    10·1 answer
  • What is the maximum fine for knowingly refilling a disposable refrigerant drum?
    11·1 answer
  • Which of the following is an essential component of reinforced concrete?
    9·1 answer
  • ) A flow is divided into two branches, with the pipe diameter and length the same for each branch. A 1/4-open gate valve is inst
    5·1 answer
  • Two solid yellow center lines on a two-lane highway indicate:
    13·2 answers
  • Why is electricity considered a secondary source of energy
    6·1 answer
  • One of the key characteristics of ________ sessions is that no idea should be immediately accepted or rejected. prototype alpha
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!