The first system to classify blood types is known as<u> A-B-O system</u>.
<u>Option: D</u>
<u>Explanation:</u>
The blood group system "ABO" is the categorizing of human blood centered on the hereditary characteristics of red blood cells means erythrocytes as measured by the presence or absence of A and B antigens on the surface of the red cells. Thus individuals may well have blood type A, type B, type O or type AB.
It was absent until 1900, when Karl Landsteiner established the concept at the Vienna University why some blood transfusions were effective while others were lethal. Landsteiner established the blood group mechanism ABO by combining each of his staff's red cells and serum.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>
It is C that is the most testable hypotheses
Answer:
Electrons are in "orbitals", regions of space where there is high probability of being found.
Explanation:
The Wave mechanical model of the atom does not restrict the electrons to certain energy levels only as in the Bohr's model, instead it describes a region around the nucleus called an orbital, where there is a high probability of finding an electron with a certain amount of energy.
Each energy level is composed of one or more orbitals and the distribution of electrons around the nucleus is determined by the number and kind of energy levels that are occupied.