Ah , a cup of hot chocolate is alot of chocolate. Im gonna drool ; )
Well , heat flows from an area of high temperature to an area of low temperature. Here , hot chocolate has the high temp , and the surrounding has a room temp. So , the heat from the hot chocolate will dissipate into the surroundings and create a thermal equilibrium. So youre right.
To answer this problem, we need to count the electrons in the given configuration. The complete configuration is 1s2 2s2 2p6 3s2 3p6. There are 2+2+6+2+6 equal to 18 electrons. We find next the element with an atomic number of 18. That element is noble gas argon.
The answer is basic solution
HOPE THIS HELPED
Answer:
The choice of the answer is fourth option that is -61 degrees.
Therefore the temperature drop is -61°Centigrade.
Explanation:
Given:
The temperature in a town started out at 55 degrees
Start temperature = 55°Centigrade. (Initial temperature)
End of the Day = -6°Centigrade. (Final temperature)
To Find:
How far did the temperature drop?
Solution:
We will have,

Substituting the above values in it we get

Therefore the temperature drop is -61°Centigrade.
Answer:
0. 414
Explanation:
Octahedral interstitial lattice sites.
Octahedral interstitial lattice sites are in a plane parallel to the base plane between two compact planes and project to the center of an elementary triangle of the base plane.
The octahedral sites are located halfway between the two planes. They are vertical to the locations of the spheres of a possible plane. There are, therefore, as many octahedral sites as there are atoms in a compact network.
The Octahedral interstitial void ratio range is 0.414 to 0.732. Thus, the minimum cation-to-anion radius ratio for an octahedral interstitial lattice site is 0. 414.