The first thing you should know for this case is the definition of distance.
d = v * t
Where,
v = speed
t = time
We have then:
d = v * t
d = 9 * 12 = 108 m
The kinetic energy is:
K = ½mv²
Where,
m: mass
v: speed
K = ½ * 1500 * (18) ² = 2.43 * 10 ^ 5 J
The work due to friction is
w = F * d
Where,
F = Force
d = distance:
w = 400 * 108 = 4.32 * 10 ^ 4
The power will be:
P = (K + work) / t
Where,
t: time
P = 2.86 * 10 ^ 5/12 = 23.9 kW
answer:
the average power developed by the engine is 23.9 kW
Answer:
a baseball flying through the air at 90 miles per hour
Explanation:
For the question, Therefore, the kinetic energy of an object is proportional to the square of its velocity (speed). In other words, If the velocity is doubled the kinetic energy will increase by a factor of four.
Answer:
uniform acceleration
Explanation:
The definition for uniform acceleration is:
if an object travels in a straight line and its velocity increases or decreases by equal amounts in equal intervals of time, then the acceleration is said to be uniform.
Hope this helps.
Good Luck
In your question where the ask is to calculate the charge that the small sphere carries which is the mass of it is 441g moving at an acceleration of 13m/s^2 nad having and electric field of 5N/C. So the formula in getting the charge is mutliply the mass and the quotients of Acceleration and the Electric Field so the answer is 1,146.6
Gravity is proportional to its mass<span> and </span>distance between<span> it and another </span><span>object</span>