Your answer is 8. You add 2 + 1 + 5.3 to get 8.3. You round down to 8 because of the sig fig rules.
Answer:
The equation v – = v 0 + v 2 v – = v 0 + v 2 is reflects the fact that when acceleration is constant, v – is just the simple average of the initial and final velocities.
Explanation:
hope this is it
Answer:
you would be better off if the car bounced backwards
Explanation:
because if the hood was dismembered than you have a high chance of very bad injury but if it is just bounced back you would have less chance of getting hurt if properly sitting and seat belted.
Answer:
0.035 N
Explanation:
Parameters given:
Charge q1 = -3.31x10^(-7) C
Charge q2 = -5.7x10^(-7) C.
Distance between them, R = 22 cm = 0.22 m
Electrostatic force between to particles is given as:
F = (k* q1 * q2) / R²
F = (9 * 10^9 * -3.31 * 10^(-7) * -5.7 * 10^(-7)) / 0.22²
F = 0.035 N
Answer:
The moment of inertia about an axis through the center and perpendicular to the plane of the square is

Explanation:
From the question we are told that
The length of one side of the square is 
The total mass of the square is 
Generally the mass of one size of the square is mathematically evaluated as

Generally the moment of inertia of one side of the square is mathematically represented as

Generally given that
it means that this moment inertia evaluated above apply to every side of the square
Now substituting for 
So

Now according to parallel-axis theorem the moment of inertia of one side of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as
![I_a = I_g + m [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20m%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> ![I_a = I_g + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20I_g%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
substituting for 
=> ![I_a = \frac{1}{12} * \frac{M}{4} * a^2 + {\frac{M}{4} }* [\frac{q}{2} ]^2](https://tex.z-dn.net/?f=I_a%20%3D%20%20%5Cfrac%7B1%7D%7B12%7D%20%20%2A%20%20%5Cfrac%7BM%7D%7B4%7D%20%2A%20a%5E2%20%2B%20%7B%5Cfrac%7BM%7D%7B4%7D%20%7D%2A%20%5B%5Cfrac%7Bq%7D%7B2%7D%20%5D%5E2)
=> 
=> 
Generally the moment of inertia of the square about an axis through the center and perpendicular to the plane of the square is mathematically represented as

=> 
=> 