1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gelneren [198K]
3 years ago
12

Why, on a sunny day, it is normally hot inside a greenhouse

Physics
1 answer:
Dahasolnce [82]3 years ago
5 0
Because of the greenhouse gases inside the greenhouse, and the gases trap the heat from the sun so the plant don't freeze, hope this helps
You might be interested in
Bats are extremely adept at catching insects in midair. If a 81.5-g bat flying in one direction at 7.21 m/s catches a 8.11-g ins
aivan3 [116]
You can look that up on google
7 0
2 years ago
A solenoidal coil with 26 turns of wire is wound tightly around another coil with 350 turns. The inner solenoid is 20.0 cm long
noname [10]

Answer:

Part a)

\phi = 2.76 \times 10^{-7} T m^2

Part B)

M = 5.52 \times 10^{-5} H

Part C)

EMF = 0.1 V/s

Explanation:

Part a)

Magnetic field due to a long ideal solenoid is given by

B = \mu_0 n i

n = number of turns per unit length

n = \frac{N}{L}

n = \frac{350}{0.20}

n = 1750 turn/m

now we know that magnetic field due to solenoid is

B = (4\pi \times 10^{-7})(1750)(0.100)

B = 2.2 \times 10^{-4} T

Now magnetic flux due to this magnetic field is given by

\phi = B.A

\phi = (2.2 \times 10^{-4})(\pi r^2)

\phi = (2.2 \times 10^{-4})(\pi(0.02)^2)

\phi = 2.76 \times 10^{-7} T m^2

Part B)

Now for mutual inductance we know that

\phi_{total} = M i

\phi_{total} = N\phi

\phi_{total} = 20(2.76 \times 10^{-4})

\phi_{total} = 5.52 \times 10^{-6}

now we have

M = \frac{5.52 \times 10^{-6}}{0.100}

M = 5.52 \times 10^{-5} H

Part C)

As we know that induced EMF is given as

EMF = M \frac{di}{dt}

EMF = 5.52 \times 10^{-5} (1800)

EMF = 0.1 V/s

3 0
3 years ago
What causes tendonitis?
Irina18 [472]

overuse of a muscle Answer:

Explanation:

6 0
2 years ago
Read 2 more answers
A 65-kg swimmer pushes on the pool wall and accelerates at 6 m/s^2. The friction experienced by the swimmer is 100 N. How many N
Helga [31]

Answer:

490N

Explanation:

According Newton's second law!

\sum Force = mass × acceleration

Fm - Ff = ma

Fm is the moving force

Ff s the frictional force = 100N

mass = 65kg

acceleration = 6m/s²

Required

Moving force Fm

Substitute the given force into thr expression and get Fm

Fm -100 = 65(6)

Fm -100 = 390

Fm = 390+100

Fm = 490N

Hence the force that will cause two cart to move is 490N

5 0
2 years ago
Four long wires are each carrying 6.0 A. The wires are located
Firdavs [7]

Answer:

B_T=2.0*10^-5[-\hat{i}+\hat{j}]T

Explanation:

To find the magnitude of the magnetic field, you use the following formula for the calculation of the magnetic field generated by a current in a wire:

B=\frac{\mu_oI}{2\pi r}

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

I: current = 6.0 A

r: distance to the wire in which magnetic field is measured

In this case, you have four wires at corners of a square of length 9.0cm = 0.09m

You calculate the magnetic field in one corner. Then, you have to sum the contribution of all magnetic field generated by the other three wires, in the other corners. Furthermore, you have to take into account the direction of such magnetic fields. The direction of the magnetic field is given by the right-hand side rule.

If you assume that the magnetic field is measured in the up-right corner of the square, the wire to the left generates a magnetic field (in the corner in which you measure B) with direction upward (+ j), the wire down (down-right) generates a magnetic field with direction to the left (- i)  and the third wire generates a magnetic field with a direction that is 45° over the horizontal in the left direction (you can notice that in the image attached below). The total magnetic field will be:

B_T=B_1+B_2+B_3\\\\B_{T}=\frac{\mu_o I_1}{2\pi r_1}\hat{j}-\frac{\mu_o I_2}{2\pi r_2}\hat{i}+\frac{\mu_o I_3}{2\pi r_3}[-cos45\hat{i}+sin45\hat{j}]

I1 = I2 = I3 = 6.0A

r1 = 0.09m

r2 = 0.09m

r_3=\sqrt{(0.09)^2+(0.09)^2}m=0.127m

Then you have:

B_T=\frac{\mu_o I}{2\pi}[(-\frac{1}{r_2}-\frac{cos45}{r_3})\hat{i}+(\frac{1}{r_1}+\frac{sin45}{r_3})\hat{j}}]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[(-\frac{1}{0.09m}-\frac{cos45}{0.127m})\hat{i}+(\frac{1}{0.09m}+\frac{sin45}{0.127m})]\\\\B_T=\frac{(4\pi*10^{-7}T/A)(6.0A)}{2\pi}[-16.67\hat{i}+16.67\hat{j}]\\\\B_T=2.0*10^-5[-\hat{i}+\hat{j}]T

5 0
3 years ago
Other questions:
  • Inertia ____.
    6·1 answer
  • What is the equation for the law of universal gravitation?
    12·2 answers
  • The energy an object has as a result of it being in motion is called? What kind of energy?
    7·2 answers
  • Many galaxies appear to have supermassive black holes in their centers powering active galactic nuclei (also called AGN). The Sc
    6·1 answer
  • A rock weighs 30 n on earth and another rock weighs 30 n on the moon. which rock has the greater mass?
    15·1 answer
  • Which of the following is an example of energy being transferred by sound waves? A loud clap of thunder causes a window to vibra
    13·2 answers
  • A current-carrying wire of length 52.0 cm is positioned perpendicular to a uniform magnetic field. If the current is 15.0 A and
    8·1 answer
  • Will mark brainlist
    15·1 answer
  • What was the name of the first man made satellite launched by the Soviet Union in 1957.​
    15·1 answer
  • A Force is applied onto a mass causing it to accelerate. If the same Force was applied to a SMALLER mass, what would happen to t
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!