Answer:
h = 24.11 m
Explanation:
Given that,
The potential energy of the snowball is 520 J
The mass of the snowball is 2.2 kg
We need to find the height of the hill. The potential energy of an object is given by the formula as follows :

g is acceleration due to gravity
h is height of the hill

So, the height of the hill is 24.11 m.
Answer:
1.07 nT
Explanation:
We know that E/B = c where E = electric field amplitude = 320 mV/m = 0.32 V/m, B = magnetic field amplitude and c = speed of light = 3 × 10⁸ m/s.
So, B = E/c
Substituting E and c into B, we have
B = E/c
= 0.32 V/m ÷ 3 × 10⁸ m/s
= 0.1067 × 10⁻⁸ T
= 1.067 × 10⁻⁹ T
= 1.067 nT
≅ 1.07 nT
Im guessing it's (a) since the numbers go in chronological order and you read the periodic table left to right
Answer:
The 6 fingers allele is dominant
Explanation:
We are told that the the individual is genotypically heterozygous, that is the have both types of the finger allele: the 5 finger allele and the 6 fingers allele however phenotypically, 6 fingers are observed. From this we can conclude that the 6 fingers allele is the one that is dominant because it is the one that is expressed phenotypically.
Momentum = (mass) x (speed) = (1 kg) x (0.01 m/s) = 0.01 kg-m/s