Answer:
I don't really know this one sorry
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
Answer:
Explanation:
90 rpm = 90 / 60 rps
= 1.5 rps
= 1.5 x 2π rad /s
angular velocity of flywheel
ω = 3π rad /s
Let I be the moment of inertia of flywheel
kinetic energy = (1/2) I ω²
(1/2) I ω² = 10⁷ J
I = 2 x 10⁷ / ω²
=2 x 10⁷ / (3π)²
= 2.2538 x 10⁵ kg m²
Let radius of wheel be R
I = 1/2 M R² , M is mass of flywheel
= 1/2 πR² x t x d x R² , t is thickness , d is density of wheel .
1/2 πR⁴ x t x d = 2.2538 x 10⁵
R⁴ = 2 x 2.2538 x 10⁵ / πt d
= 4.5076 x 10⁵ / 3.14 x .1 x 7800
= 184
R= 3.683 m .
diameter = 7.366 m .
b ) centripetal accn required
= ω² R
= 9π² x 3.683
= 326.816 m /s²
Answer:
Explanation:
Potential energy on the surface of the earth
= - GMm/ R
Potential at height h
= - GMm/ (R+h)
Potential difference
= GMm/ R - GMm/ (R+h)
= GMm ( 1/R - 1/ R+h )
= GMmh / R (R +h)
This will be the energy needed to launch an object from the surface of Earth to a height h above the surface.
Extra energy is needed to get the same object into orbit at height h
= Kinetic energy of the orbiting object at height h
= 1/2 x potential energy at height h
= 1/2 x GMm / ( R + h)
Explanation:
frequency =speed/wavelength
=5/0.5=10Hz