1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kitty [74]
3 years ago
7

Which of the following instruments is not typically an electronic instrument, but could be enhanced with the help of microphones

? acoustic guitar synthesizer theremin electronic organ
Physics
2 answers:
tino4ka555 [31]3 years ago
7 0

it is the acoustic guitar

TiliK225 [7]3 years ago
6 0
The synthesizer, the Theremin, and the electronic organ are totally electronic
instruments.  They don't make any sound at all without electronic circuits and
electric power.

The acoustic guitar is not inherently an electronic instrument.  It can be made
louder with microphones, and given special effects with other electronic stuff.
Whether any of this is actually an 'enhancement' is open to debate.

You might be interested in
Which equation is used to determine the density of a substance?
Mademuasel [1]
The answer is D=M/V hope it helps!!
3 0
3 years ago
Read 2 more answers
What determines the properties of elements?
olasank [31]

the number of electrons that fill the outer shell determines the properties of elements
6 0
3 years ago
Read 2 more answers
A bond between two copper atoms would be a<br> bond? *
mihalych1998 [28]
A metallic bond would be formed
8 0
2 years ago
Read 2 more answers
The drawing shows two situations in which charges are placed on the x and y axes. They are all located at the same distance of 5
ra1l [238]

Answer:

For situation (a)

net charge E = E₊₂ + E₋₅ + E₋₃

E =  K(q/d²)

where K = 8.99e9

d = 5.7cm = 5.7e-2m

Therefore,

E₊₂(x) = K(q/d²) = (8.99e9)× ((2.0e-6)÷(5.7e-2)) = 3.15e5(+x)

E₋₅(y) = K(q/d²) = (8.99e9)× ((5.0e-6)÷(5.7e-2)) =  7.88e5(+y)

E₋₃(x) = K(q/d²) = (8.99e9)× ((3.0e6)÷(5.7e-2)) =  4.73e5(+x)

thus

E = E₊₂ + E₋₅ + E₋₃

= 3.15e5(x) + 7.88e5(y) + 4.73e6(x)

= 7.88e6(x) + 7.88e6(y)

use Pythagorean theorem

I <em>E </em>I  = \sqrt{(7.89e5)^{2}  + (7.89e5)^{2}} =  1.242e6\frac{N}{C}

∅ = tan^{-1}(\frac{7.88e5}{7.88e5} ) = tan^{-1}(1) = 45°

Thus for (a) net magnitude =  1.115e6\frac{N}{C} @ 45° above +x axis

for situation (b)

net charge E = E₊₄ + E₊₁ + E₋₁ + E₊₆

E₊₄(x) = K(q/d²) = (8.99e9)× ((4.0e-6)÷(5.7e-2)) = 6.30e5(+x)

 E₊₁(y) = K(q/d²) = (8.99e9)× ((1.0e-6)÷(5.7e-2)) = 1.58e5(-y)

E₋₁(x) = K(q/d²) = (8.99e9)× ((1.0e-6)÷(5.7e-2)) = 1.58e5(+x)

E₊₆(y) = K(q/d²) = (8.99e9)× ((6.0e-6)÷(5.7e-2)) = 9.46e5(+y)

thus,

E = E₊₄ + E₊₁ + E₋₁ + E₊₆

= 6.30e5(x) - 1.58e5(y) + 1.58e5(x) + 9.46e5(y)

= 7.88e5(x) + 7.88e5(y)

use Pythagorean theorem

I <em>E </em>I  = \sqrt{(7.88e5)^{2}  + (7.88e5)^{2}} =  1.242e6\frac{N}{C}

∅ = tan^{-1}(\frac{7.88e5}{7.88e5} ) = tan^{-1}(1) = 45°

Thus for (a) and (b) the net magnitude =  1.242e6\frac{N}{C} @ 45° above +x axis

Explanation:

I attached a sample image, i hope that corresponds to your question

5 0
2 years ago
A box is at rest on a table. What can you say about the forces acting on the box?
Nikitich [7]
You can tell a lot about an object that's not moving,
and also a lot about the forces acting on it:

==> If the box is at rest on the table, then it is not accelerating.

==> Since it is not accelerating, I can say that the forces on it are balanced.

==> That means that the sum of all forces acting on the box is zero,
and the effect of all the forces acting on it is the same as if there were
no forces acting on it at all.

==> This in turn means that all of the horizontal forces are balanced,
AND all of the vertical forces are balanced.

Horizontal forces:
sliding friction, somebody pushing the box

All of the forces on this list must add up to zero. So ...

(sliding friction force) = (pushing force), in the opposite direction.

If nobody pushing the box, then sliding friction force = zero.

Vertical forces:
gravitational force (weight of the box, pulling it down)
normal force (table pushing the box up)

All of the forces on this list must add up to zero, so ...

(Gravitational force down) + (normal force up) = zero

(Gravitational force down) = -(normal force up) .
6 0
3 years ago
Read 2 more answers
Other questions:
  • Taylor drives 5 miles in 10 minutes. She stops at a light for 2 minutes. She then travels another 10 miles in 8 minutes. What wa
    14·1 answer
  • What are the characteristics of low energy waves
    8·1 answer
  • Find the probability density of a particle moving in an interval of 101o the box. The length of the one-dimensional box is 20x10
    7·1 answer
  • A 72.0-kg object hits the ground at a velocity of 79.0 m/s. Neglecting air resistance, which relationship allows you to calculat
    9·1 answer
  • Linh builds a circuit from the diagram shown. Which bulb could Linh remove from the circuit to make all of the other bulbs stop
    9·2 answers
  • Children begin to form a self-concept around ______ months of age.​
    14·2 answers
  • In acceleration time graph curve upward shows _______ acceleration
    9·2 answers
  • T object]user: if you have a diagnostic x-ray, then you have been:
    11·2 answers
  • STATE THE LAWS OF CONSERVATION OF MOMENTUM​
    14·1 answer
  • What is in the center of our galaxy?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!