1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andre [41]
3 years ago
11

Earthquakes usually occur on or near: cities roads fault lines lakes

Physics
2 answers:
maksim [4K]3 years ago
8 0

Answer:

C. fault lines

Explanation:

The earth's surface can be changed by forces below it. Folding, earthquakes, and volcanoes have changed the earth greatly in the past. Sometimes, the crust moves along large fractures called faults. Forces are at work today causing changes to the earth.

vivado [14]3 years ago
3 0

Answer:

Fault lines

Explanation:

Earthquakes are most likely to occur near or on fault lines. A great example of this is the ring of fire, a gigantic fault line that gives catastrophic earthquakes.

You might be interested in
According to Newton's Second Law of Motion, an object will accelerate if you apply what kind of force? Question 1 options: Frict
Bumek [7]

An unbalanced force is required to accelerate an object according to Newton's Second Law of Motion.

<h3>What does Newton's Second Law of Motion state?</h3>

It states that the force applied to the object is equal to the product of mass and acceleration.

F = ma

  • An object will accelerate when the net force applied on the object is more than zero or unbalanced.
  • The acceleration is the change in the direction or speed of the object. To achieve acceleration the force must be greater in a direction.

  • When force is greater in one the object move in that direction which is known as acceleration.

Therefore, an unbalanced force is required to accelerate an object according to Newton's Second Law of Motion.

Learn more about Newton's Second Law of Motion.:

brainly.com/question/25810165

5 0
2 years ago
What's at the bottom of the black hole? Explain .​
Brilliant_brown [7]

Answer:

Unknown

Explanation:

By definition, we can't observe what's inside there, because no light – no information of any kind – can escape a black hole. But astrophysical theories suggest that, at the core of a black hole, all the black hole's mass is concentrated into a tiny point of infinite density. This point is known as a singularity.

7 0
3 years ago
Coulomb’s law and static point charge ensembles (15 points). A test charge of 2C is located at point (3, 3, 5) in Cartesian coor
fenix001 [56]

Answer:

a) F_{r}= -583.72MN i + 183.47MN j + 6.05GN k

b) E=3.04 \frac{GN}{C}

Step-by-step explanation.

In order to solve this problem, we mus start by plotting the given points and charges. That will help us visualize the problem better and determine the direction of the forces (see attached picture).

Once we drew the points, we can start calculating the forces:

r_{AP}^{2}=(3-0)^{2}+(3-0)^{2}+(5+0)^{2}

which yields:

r_{AP}^{2}= 43 m^{2}

(I will assume the positions are in meters)

Next, we can make use of the force formula:

F=k_{e}\frac{q_{1}q_{2}}{r^{2}}

so we substitute the values:

F_{AP}=(8.99x10^{9})\frac{(1C)(2C)}{43m^{2}}

which yields:

F_{AP}=418.14 MN

Now we can find its components:

F_{APx}=418.14 MN*\frac{3}{\sqrt{43}}i

F_{APx}=191.30 MNi

F_{APy}=418.14 MN*\frac{3}{\sqrt{43}}j

F_{APy}=191.30MN j

F_{APz}=418.14 MN*\frac{5}{\sqrt{43}}k

F_{APz}=318.83 MN k

And we can now write them together for the first force, so we get:

F_{AP}=(191.30i+191.30j+318.83k)MN

We continue with the next force. The procedure is the same so we get:

r_{BP}^{2}=(3-1)^{2}+(3-1)^{2}+(5+0)^{2}

which yields:

r_{BP}^{2}= 33 m^{2}

Next, we can make use of the force formula:

F_{BP}=(8.99x10^{9})\frac{(4C)(2C)}{33m^{2}}

which yields:

F_{BP}=2.18 GN

Now we can find its components:

F_{BPx}=2.18 GN*\frac{2}{\sqrt{33}}i

F_{BPx}=758.98 MNi

F_{BPy}=2.18 GN*\frac{2}{\sqrt{33}}j

F_{BPy}=758.98MN j

F_{BPz}=2.18 GN*\frac{5}{\sqrt{33}}k

F_{BPz}=1.897 GN k

And we can now write them together for the second, so we get:

F_{BP}=(758.98i + 758.98j + 1897k)MN

We continue with the next force. The procedure is the same so we get:

r_{CP}^{2}=(3-5)^{2}+(3-4)^{2}+(5-0)^{2}

which yields:

r_{CP}^{2}= 30 m^{2}

Next, we can make use of the force formula:

F_{CP}=(8.99x10^{9})\frac{(7C)(2C)}{30m^{2}}

which yields:

F_{CP}=4.20 GN

Now we can find its components:

F_{CPx}=4.20 GN*\frac{-2}{\sqrt{30}}i

F_{CPx}=-1.534 GNi

F_{CPy}=4.20 GN*\frac{2}{\sqrt{30}}j

F_{CPy}=-766.81 MN j

F_{CPz}=4.20 GN*\frac{5}{\sqrt{30}}k

F_{CPz}=3.83 GN k

And we can now write them together for the third force, so we get:

F_{CP}=(-1.534i - 0.76681j +3.83k)GN

So in order to find the resultant force, we need to add the forces together:

F_{r}=F_{AP}+F_{BP}+F_{CP}

so we get:

F_{r}=(191.30i+191.30j+318.83k)MN + (758.98i + 758.98j + 1897k)MN + (-1.534i - 0.76681j +3.83k)GN

So when adding the problem together we get that:

F_{r}=(-0.583.72i + 0.18347j +6.05k)GN

which is the answer to part a), now let's take a look at part b).

b)

Basically, we need to find the magnitude of the force and divide it into the test charge, so we get:

F_{r}=\sqrt{(-0.583.72)^{2} + (0.18347)^{2} +(6.05)^{2}}

which yields:

F_{r}=6.08 GN

and now we take the formula for the electric field which is:

E=\frac{F_{r}}{q}

so we go ahead and substitute:

E=\frac{6.08GN}{2C}

E=3.04\frac{GN}{C}

7 0
3 years ago
What does force change?
Nonamiya [84]
A force is a push or pull to an object
4 0
4 years ago
When you irradiate a metal with light of wavelength 433 nm in an investigation of the photoelectric effect, you discover that a
sergij07 [2.7K]

Answer:

The right solution is:

(a) 2.87 eV

(b) 1.4375 eV

Explanation:

Given:

Wavelength,

= 433 nm

Potential difference,

= 1.43 V

Now,

(a)

The energy of photon will be:

E = \frac{6.626\times 10^{-34}\times 3\times 10^8}{433\times 10^{-9}}

  = 4.59\times 10^{-19} \ J

or,

  = \frac{4.59\times 10^{-19}}{1.6\times 10^{-19}}

  = 2.87 \ eV

(b)

As we know,

⇒ Vq=\frac{hc}{\lambda}-\Phi_0

By substituting the values, we get

⇒ 1.43\times 1.6\times 10^{19}=\frac{6.626\times 10^{-34}\times 3\times 10^8}{433\times 10^{-9}}-\Phi_0

⇒                       \Phi_0=2.3\times 10^{-19} \ J

or,

⇒                            =\frac{2.3\times 10^{-19}}{1.6\times 10^{-19}}

⇒                            =1.4375 \ eV

5 0
3 years ago
Other questions:
  • The highest waterfall in the world is the Salto Angel in Venezuela. Its longest single falls has a height of 807 m. If water at
    7·1 answer
  • A physics student is conducting an optical experiment using an Optical Bench Kit available in many physics classrooms. A lit can
    8·1 answer
  • Two things you can do to increase the acceleration of an object
    13·1 answer
  • _____ is a property that determines how much current will flow for a given source voltage, whereas a _____ is a device that cont
    7·2 answers
  • What is an example of a system and describe the energy flow through it.
    9·1 answer
  • Peter rides his bike 5 blocks north and then 10 blocks east. What is his displacement? What is his total distance traveled?
    12·1 answer
  • What 2 layers have temperature increasing with elevation?
    8·2 answers
  • Samaira needs to rent some tents for an outdoor family reunion in July what is the best type of tent for Samaira to rent so that
    7·2 answers
  • 3.- Un barco que tiene el motor averiado es ayudado por dos remolcadores para entrar en el puerto. Cada uno de ellos tira de él
    11·1 answer
  • 35) Kinetic energy in flowing water drives
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!