So the problem ask to calculate the magnitude of the average force applied to the ball if its mass is 0.2kg changes its velocity from 20m/s to 12m/s and the time contact with the ball with the wall is 60 ms. In my calculation the best answer would be 107N.
<span>θ=0.3sin(4t)
w=0.3cost(4t)(4)=1.2cost(4t)
a=-4.8sin(4t)
cos4t max will always be 1 (refer to cos graph), for same reason, sin4t will always be 0
therefore, wmax=1.2rad/s
vAmax=r*w=250*1.2=300mm/s
(may be different if your picture/radius is from a different picture)
adt=a*r=200*-4.8sin(4t)=0 (sin(4t)=0)
adn=r*w^2=200*1.2^2=288
ad= square root of adt^2+adn^2 = 288mm/s^2</span>
Answer: 4.8 s
Explanation:
We have the following data:
the mass of the raft
the force applied by Sawyer
the raft's final speed
the raft's initial speed (assuming it starts from rest)
We have to find the time 
Well, according to Newton's second law of motion we have:
(1)
Where
is the acceleration, which can be expressed as:
(2)
Substituting (2) in (1):
(3)
Where 
Isolating
from (3):
(4)
Finally:
Answer:
The angle of the corresponding refracted ray is 34.84°
Explanation:
Given that,
Refractive index of water n= 1.33
Refractive index of glass n= 1.52
Incident angle = 30.0°
We need to calculate the refracted angle
Using formula of Snell's law

Put the value into the formula





Hence, The angle of the corresponding refracted ray is 34.84°
<span>The force will be zero if the wagons are moving at a constant speed (i.e. not accelerating), as there is no frictional force to overcome. If the wagons are accelerating, the force will be proportional to the acceleration, and 20% of the force applied by A.</span>