If the entire ray is PQ, then all of those points lie on the ray.
Answer:
Step-by-step explanation:
(-4,0) ; (-7, -14)
![d=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\\\\ =\sqrt{(-7-[-4])^{2}+(-14-0)^{2}}\\\\ =\sqrt{(-7+4)^{2}+(-14)^{2}}\\\\=\sqrt{(-3)^{2}+(-14)^{2}}\\\\=\sqrt{9+196} \\\\=\sqrt{205} \\\\=14.3178](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%28x_%7B2%7D-x_%7B1%7D%29%5E%7B2%7D%2B%28y_%7B2%7D-y_%7B1%7D%29%5E%7B2%7D%7D%5C%5C%5C%5C%20%3D%5Csqrt%7B%28-7-%5B-4%5D%29%5E%7B2%7D%2B%28-14-0%29%5E%7B2%7D%7D%5C%5C%5C%5C%20%3D%5Csqrt%7B%28-7%2B4%29%5E%7B2%7D%2B%28-14%29%5E%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B%28-3%29%5E%7B2%7D%2B%28-14%29%5E%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B9%2B196%7D%20%5C%5C%5C%5C%3D%5Csqrt%7B205%7D%20%5C%5C%5C%5C%3D14.3178)
The prisms are congruent if the lengths of corresponding edges are in a 1:1 ratio, the volumes and the base areas are equal and the prisms have same height
Step-by-step explanation:
For the two prisms to be congruent the following properties should hold TRUE
The lengths of corresponding edges are in a 1:1 ratio.
The volumes are equal.
The base areas are equal.
The prisms have the same height.
espero que sea de tu agrado la tarea que te estoy enviando
soy de peru
brillith2022
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
pdf
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
pdf
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
pdf
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
pdf
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
pdf
</span>