The correct answer is C) Rainfall
Answer:
F=m(11.8m/s²)
For example, if m=10,000kg, F=118,000N.
Explanation:
There are only two vertical forces acting on the rocket: the force applied from its thrusters F, and its weight mg. So, we can write the equation of motion of the rocket as:

Solving for the force F, we obtain that:

Since we know the values for a (2m/s²) and g (9.8m/s²), we have that:

From this relationship, we can calculate some possible values for F and m. For example, if m=10,000kg, we can obtain F:

In this case, the force from the rocket's thrusters is equal to 118,000N.
Use this formula to find your answer...
Determine the frequency of a clock waveform whose period is 2us or (micro) and 0.75ms
frequency (f)=1/( Time period).
Frequency of 2 us clock =1/2*10^-6 =10^6/2 =500000Hz =500 kHz.
Frequency of 0..75ms clock =1/0.75*10^-3 =10^3/0.75 =1333.33Hz =1.33kHz.
Answer:
The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame
Explanation:
From the question we are told that
The distance between earth and Retah is 
Here c is the peed of light with value 
The time taken to reach Retah from earth is 
The velocity of the spacecraft is mathematically evaluated as

substituting values


The time elapsed in the spacecraft’s frame is mathematically evaluated as

substituting value
![T = 90000 * \sqrt{ 1 - \frac{[2.4*10^{8}]^2}{[3.0*10^{8}]^2} }](https://tex.z-dn.net/?f=T%20%20%3D%20%2090000%20%2A%20%20%5Csqrt%7B%201%20-%20%20%5Cfrac%7B%5B2.4%2A10%5E%7B8%7D%5D%5E2%7D%7B%5B3.0%2A10%5E%7B8%7D%5D%5E2%7D%20%7D)

=> 
So The time elapsed at the spacecraft’s frame is less that the time elapsed at earth's frame