He ordered into increasing atomic mass
I will assume you are asking what the initial acceleration of the sphere is since the information provided seems to indicate that.
First we need to know Newton's Law
F=ma.
We know the mass of the sphere and we want a so we solve to get
a=F/m.
Now we need the force on the charged sphere. This is given by the electric field, E and the charge, Q. The relationship is F=Q×E. (Recall that the electric field units can be expressed in Newtons/Coulomb).
Now the electric field above a large (~infinite) sheet of charge with a known charge density σ, is given by
E = σ/(2ε0)
Plug in your values of σ, to get E, then the sphere charge Q to get F, the the mass into a = F/m to get the acceleration
ANSWER:
F(h)= 230 N is the horizontal force you will need to move the pickup along the same road at the same speed.
STEP-BY-STEP EXPLANATION:
F(h) is Horizontal Force = 200 N
V is Speed = 2.4 m/s
The total weight increase by 42%
coefficient of rolling friction decrease by 19%
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.
F(h) = F(f)
F(h) = mg* u
m is mass
g is gravitational acceleration = 9.8 m/s^2
200 = mg*u
Since weight increases by 42% and friction coefficient decreases by 19%
New weight = 1+0.42 = 1.42 = (1.42*m*g)
New friction coefficient = μ = 1 - 0.19 = 0.81 = 0.81 u
F(h) = (0.81μ) (1.42 m g)
= (0.81) (1.42) (μ m g)
= (0.81) (1.42) (200)
= 230 N
An occluded front forms when a cold front catches up with a warm front. So it would bring Sun and warmth.