It started that the present is the key to the past. The process that we see in operation today are the same ones that have operated in the geologic past.
Answer:
The magnitude of the magnetic field B at the center of the loop is 5.0272 x 10⁻⁴ T.
Explanation:
Given;
Radius of circular loop, R = 3.00 cm = 0.03 m
Current in the loop, I = 12.0 A
Magnetic field at the center of circular loop is given as;
B = μ₀I / 2R
Where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
R is the radius of the circular loop
I is the current in the loop
Substitute the given values in the above equation and calculate the magnitude of the magnetic field;
B = (4π x 10⁻⁷ x 12)/ 0.03
B = 5.0272 x 10⁻⁴ T
Therefore, the magnitude of the magnetic field B at the center of the loop is 5.0272 x 10⁻⁴ T.
To solve this problem we need the concepts of Energy fluency and Intensity from chemical elements.
The energy fluency is given by the equation

Where
The energy fluency
c = Activity of the source
r = distance
E = electric field
In the other hand we have the equation for current in materials, which is given by

Then replacing our values we have that


We can conclude in this part that 1.3*10^7Bq is the activity coming out of the cylinder.
Now the energy fluency would be,



The uncollided flux density at the outer surface of the tank nearest the source is 
- The work done is -30 J
- The heat is 25 J
<h3>What is the heat and the work?</h3>
We know that the work done by a gas could be positive or negative same as the heat. If the work done is positive then work is done on the system.
The work done is obtained from;
W = PΔV
W = 1.0 x 105 Pa(0.0006 m³ - 0.0003 m³)
W = 30 J
Given that the gas absorbs heat from the surroundings and the gas is expanding.
- The work done is -30 J
- The heat is 25 J
Learn more about work done on a gas:brainly.com/question/12539457
#SPJ1
Answer: x ≈ 36.3 cm
Explanation:
Conservation of momentum during the collision
0.0340(120) + 1.24(0) = (0.0340 + 1.24) v
v = 3.2025 m/s
The kinetic energy of the block/bullet mass will convert to spring potential
½kx² = ½mv²
x = √(mv²/k)
x = √(1.274(3.2025²) / 99.0)
x = 0.363293... ≈ 36.3 cm