1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
3 years ago
6

Which statement could be used to explain why the function h(x) = x3 has an inverse relation that is also a function?

Mathematics
1 answer:
eimsori [14]3 years ago
3 0

Answer:

h(x) = x^3

A function has an inverse that is also a function is it is a one-to-one function, a function is one-to-one if each value in the domain is linked to only one value in the range, and if each value in the range is linked to only one value in the domain.

Then, a function that is monotonous growing is always one to one, and a function is monotonous growing if the derivative is positive for all the values of x

The derivative of x^3 is:

h'(x) = 3*x^2

and as you know, x^2 is always equal or greater than zero, so h(x) = x^3 is monotonous growing, then it has a inverse that is also a function.

You might be interested in
Property for 1• (a + 3) = a +3
mina [271]

Answer: Infinitely Many Solutions

Step-by-step explanation is below.

5 0
3 years ago
Across which axis was point A reflected​
Snezhnost [94]

Answer:

When point A with coordinates (0, -1) is reflected across the x-axis and mapped onto point A', the coordinates of A' will be (0, 1).

i.e A'(0, 1) is the image of point A after a reflection.

Hence, point A is reflected across the x-axis.

Step-by-step explanation:

When we reflect a point A across the x-axis, the value of 'y' gets negated, but the value of 'x' remains unchanged.

In other words, when point P with coordinates (x, y) is reflected across the x-axis and mapped onto point P', the coordinates of P' will be (x, -y).

Thus, the rule is:

P(x, y) → P'(x, -y)

Thus, when point A with coordinates (0, -1) is reflected across the x-axis and mapped onto point A', the coordinates of A' will be (0, 1).

i.e A'(0, 1) is the image of point A after a reflection.

Hence, point A is reflected across the x-axis.

4 0
3 years ago
A store sells new video games for $55 each. Used video games sell for $12 each. Paul is buying 3 new video games and x
harina [27]

answer:

y = 165+12x should be the answer

4 0
3 years ago
-1/225x^2+2/3x what is the vertex of this quadratic function?
Julli [10]
\bf \textit{vertex of a parabola}\\ \quad \\\\

\begin{array}{lccclll}
y=&-\frac{1}{225}x^2&+\frac{2}{3}x\\\\
y=&-\frac{1}{225}x^2&+\frac{2}{3}x&+0\\
&\uparrow &\uparrow &\uparrow \\
&a&b&c
\end{array}\qquad 
\left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad  {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right)
6 0
3 years ago
Find the value of the variables in the simplest form
STatiana [176]

Answer:

x = 3

Step-by-step explanation:

Using the tangent ratio in the right triangle and the exact value

tan60° = \sqrt{3}

tan60° = \frac{opposite}{adjacent} = \frac{x}{\sqrt{3} } = \sqrt{3} ( multiply both sides by \sqrt{3} )

x = 3

6 0
3 years ago
Other questions:
  • I'm trying to figure out with my son how to connect consecutive points with straight lines
    7·1 answer
  • If point b is equidistant from the vertices of triangle ECG, find BG
    11·1 answer
  • Solve the quadratic equation x2 + 14x = 51 by completing the square.
    15·1 answer
  • Which of the following expressions is equal to −17
    14·1 answer
  • Which of the following statements are true based on the diagram
    13·2 answers
  • Solve the equation using the zero product principle<br> (x-3)(x+6)=0
    14·1 answer
  • If f(x) -3 and g(x) = 3x2+x-6, find (f+9)(x).
    15·2 answers
  • Select the equation that represents the problem. Let × represent the unknown number.
    11·2 answers
  • A tutot earns $105 for 3 hours of tutoring. How much would she earn if she tutored for
    13·2 answers
  • M∠GFZ = 38°, m∠ZFE = 2x+ 125, and m∠GFE = x+ 163. Find x.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!