(50 gal / 5 min) x (.0037854 m³/gal) x (1 min / 60 sec)
= (50 · 0.0037854 · 1) / (5 · 60) m³/sec
= 0.000631 m³/sec
When conducting and experiment you want to have a notebook and something to write down notes with so you can keep everything organized and proper, and to not miss anything in the experiment. Also you want to have everything in order of the way it should be in.
I hope you found this helpful!
As the <em>voltage</em> applied to a crcuit increases, the power dissipated by the circuit, and the current flowing through the circuit, both also increase.
Solution :
We know that :
Formula for Gravitational force is given by :

where, G is the gravitational constant
M is the mass of the bigger body
m is the mass of the smaller body
r is the distance between the two bodies.
And the formula for the centripetal force is given by :

where, m is the mass of the rotating body
v is the velocity
r is the radius of rotation of the body.
We know that mathematically, the gravitational force is equal to the centripetal force of the body.
Therefore,



Hence derived.
Answer:
No.
Explanation:
We shall solve this problem by calculating the resolving power of eye for given wavelength
Resolving Power of eye = \frac{1.22\lambda }{D}
Where λ is wave length of light and D is diameter of eye.
λ is 600 nm and D is 3.5 mm . Put these values in the given formula
Resolving Power = \frac{1.22\times 600\times 10^{-9} }{3.5\times 10^{-3}}\\
=209.14 \times 10^{-6}radian
From the formula
Φ = \frac{L}{D}[/tex]
Where Ф is resolving power . If L be distance between two points that can be resolved at distance D. D is 6 km or 6000 m .
209.14 \times 10^{-6}=\frac{L}{6000}\\
L= 1.254 m
So minimum distance that can be resolved is 1.254 m.